Физический смысл волновой функции состоит в том. Физический смысл волновой функции
4.4.1. Гипотеза де Бройля
Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.
В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка ( тепловое излучение ), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.
Чтобы объяснить некоторые физические явления , необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.
Итак, фотон-элементарная частица света, обладающая волновыми свойствами.
Формула для импульса фотона
. | (4.4.3) |
По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.
К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.
Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?
Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.
4.4.2. Волновая функция и ее физический смысл
Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .
Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:
Отсюда следует физический смысл волновой функции :
4.4.3. Соотношение неопределенностей
Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.
Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .
В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.
В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью
Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .
Поясним их одним модельным экспериментом.
При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.
Рис. 4.4.1.Пояснение к соотношению неопределенности.
Соотношение неопределенностей можно представить в виде
, | (4.4.10) |
где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.
Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.
"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:
,
где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии ( потенциальная энергия определяется силовым полем , в котором находится частица, и для стационарного случая не зависит от времени)
Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид
![]() |
(4.4.13) |
Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.
4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа
Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.
Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:
Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)
На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.
Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.
Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:
Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:
.(4.4.18) |
Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.
ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь
ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия
Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин . Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь
ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь
ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия
волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave function … Справочник технического переводчика
волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь
волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas
волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas
ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция , описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь
Книги
- , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 882 грн (только Украина)
- Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…
Как известно, основная задача классической механики заключается в определении положения макрообъекта в любой момент времени. Для этого составляется система уравнений, решение которой позволяет выяснить зависимость радиус-вектора от времени t . В классической механике состояние частицы при ее движении в каждый момент задается двумя величинами: радиус-вектором и импульсом . Таким образом, классическое описание движения частицы правомерно, если оно происходит в области с характерным размером, много большим, чем длина волны де Бройля . В противном случае (например, вблизи ядра атома) следует принимать во внимание волновые свойства микрочастиц. Об ограниченной применимости классического описания микрообъектов, имеющих волновые свойства, и говорят соотношения неопределенностей.
С учетом наличия у микрочастицы волновых свойств ее состояние в квантовой механике задается с помощью некоторой функции координат и времени (x, y, z, t ) , называемой волновой или - функцией . В квантовой физике вводится комплексная функция, описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности).
Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения решения в частных физических задачах. Таким уравнением является уравнение Шрёдингера .
Теория, описывающая движение малых частиц с учетом их волновых свойств, называется квантовой , или волновой механикой . Многие положения этой теории кажутся странными и непривычными с точки зрения представлений, сложившихся при изучении классической физики. Следует всегда помнить, что критерием правильности теории, какой бы странной она не казалась поначалу, является совпадение ее следствий с опытными данными. Квантовая же механика в своей области (строение и свойства атомов, молекул и отчасти атомных ядер) прекрасно подтверждается опытом.
Волновая функция описывает состояние частицы во всех точках пространства и для любого момента времени. Для понимания физического смысла волновой функции обратимся к опытам по дифракции электронов. (Опыты Томсона и Тартаковского по пропусканию электронов через тонкую металлическую фольгу). Оказывается, что четкие дифракционные картины обнаруживаются даже в том случае, если направлять на мишень одиночные электроны, т.е. когда каждый последующий электрон испускается после того, как предыдущий достигнет экрана. После достаточной продолжительной бомбардировки картина на экране будет в точности соответствовать той, которая получается при одновременном направлении на мишень большого числа электронов.
Из этого можно сделать вывод о том, движение любой микрочастицы по отдельности, в том числе и место ее обнаружения, подчиняется статистическим (вероятностным) закономерностям, и при направлении на мишень одиночного электрона точку на экране, в которой он будет зафиксирован, заранее со 100%-й уверенностью предсказать невозможно.
В дифракционных опытах Томсона на фотопластинке образовывалась система темных концентрических колец. Можно с уверенностью сказать, что вероятность обнаружения (попадания) каждого испущенного электрона в различных местах фотопластинки неодинакова. В области темных концентрических колец эта вероятность больше, чем в остальных местах экрана. Распределение электронов по всему экрану оказывается таким же, каким является распределение интенсивности электромагнитной волны в аналогичном дифракционном опыте: там, где интенсивность рентгеновской волны велика, частиц в опыте Томсона регистрируется много, а там, где интенсивность мала - частицы почти не появляются.
С волновой точки зрения наличие максимума числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волны де Бройля. Это послужило основанием для статистического (вероятностного) истолкования волны де Бройля . Волновая функция как раз и является математическим выражением, которое позволяет описать распространение какой-либо волны в пространстве. В частности, вероятность найти частицу в данной области пространства пропорциональна квадрату амплитуды волны, связанной с частицей.
Для одномерного движения (например, в направлении оси Ox ) вероятность dP обнаружения частицы в промежутке между точками x и x + dx в момент времени t равна
dP = , (6.1)
где | ( x,t )| 2 = (x,t ) *( x,t ) - квадрат модуля волновой функции (значок * обозначает комплексное сопряжение).
В общем случае при движении частицы в трехмерном пространстве вероятность dP обнаружения частицы в точке с координатами (x,y,z) в пределах бесконечно малого объема dV задается аналогичным уравнением : dP = | (x,y,z,t) | 2 dV . Впервые вероятностную интерпретацию волновой функции дал Борн в 1926г.
Вероятность обнаружить частицу во всем бесконечном пространстве равна единице. Отсюда следует условие нормировки волновой функции:
.
(6.2)
Величина является плотностью вероятности , или, что то же самое, плотностью распределение координат частиц. В простейшем случае одномерного движения частицы вдоль оси ОX среднее значение ее координаты вычисляется следующим соотношением:
<
x(t
)>=
. (6.3)
Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной), непрерывной (вероятность не может меняться скачком) и гладкой (без изломов) во всем пространстве.
Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Ψ1, Ψ2 , Ψ n , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:
, (6.4)
где Cn ( n = 1, 2, 3) - произвольные, вообще говоря, комплексные числа.
Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовуютеорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.
Волновая функция Ψ является основной характеристикой состояниямикрообъектов.
Например, среднее расстояние < r > электрона отядра вычисляется по формуле:
,
где вычисления проводятся, как и в случае (6.3). Таким образом, точно предсказать в дифракционных опытах, в каком месте экрана будет зафиксирован тот или иной электрон, невозможно, даже заранее зная его волновую функцию. Можно лишь с определенной вероятностью предположить, что электрон будет зафиксирован в определенном месте . В этом отличие поведения квантовых объектов от классических. В классической механике при описании движения макротел мы со 100%-й вероятностью знали заранее, в каком месте пространства будет находиться материальная точка (например, космическая станция ) в любой момент времени.
Де Бройль использовал представление о фазовых волнах (волнах вещества или волнах де Бройля) для наглядного толкования правила квантования орбит электрона в атоме по Бору в случае одноэлектронного атома. Он рассмотрел фазовую волну, бегущую вокруг ядра по круговой орбите электрона. Если на длине орбиты укладывается целое число этих волн , то волна при обходе вокруг ядра будет всякий раз возвращаться в исходную точку с той же фазой и амплитудой. В этом случае орбита становится стационарной и не возникает излучения. Де Бройль записал условие стационарности орбиты или правило квантования в виде:
где
R
- радиус круговой орбиты,
п
- целое число (главное квантовое число). Полагая здесь
и учитывая, что
L = RP
есть момент импульса электрона, получим:
что совпадает с правилом квантования орбит электрона в атоме водорода по Бору.
В дальнейшем условие (6.5) удалось обобщить и на случай эллиптических орбит, когда длина волны меняется вдоль траектории электрона. Однако, в рассуждениях де Бройля предполагалось, что волна распространяется не в пространстве, а вдоль линии - вдоль стационарной орбиты электрона. Этим приближением можно пользоваться в предельном случае, когда длина волны пренебрежимо мала по сравнению с радиусом орбиты электрона.
корпускулярно -- волновым дуализмом в квантовой физике состояние частицы описывается при помощи волновой функции ($\psi (\overrightarrow{r},t)$- пси-функция).
Определение 1
Волновая функция -- это функция, которая используется в квантовой механике. Она описывает состояние системы, которая имеет размеры в пространстве. Она является вектором состояния.
Данная функция является комплексной и формально имеет волновые свойства. Движение любой частицы микромира определено вероятностными законами. Распределение вероятности выявляется при проведении большого числа наблюдений (измерений) или большого количества частиц. Полученное распределение аналогично распределению интенсивности волны. То есть в местах с максимальной интенсивностью отмечено максимальное количество частиц.
Набор аргументов волновой функции определяет ее представление. Так, возможно координатное представление: $\psi(\overrightarrow{r},t)$, импульсное представление: $\psi"(\overrightarrow{p},t)$ и т.д.
В квантовой физике целью ставится не точность предсказания события, а оценка вероятности того или иного события. Зная величину вероятности, находят средние значения физических величин. Волновая функция позволяет находить подобные вероятности.
Так вероятность присутствия микрочастицы в объеме dV в момент времени t может быть определена как:
где $\psi^*$- комплексно сопряженная функция к функции $\psi.$ Плотность вероятности (вероятность в единице объёма) равна:
Вероятность является величиной, которую можно наблюдать в эксперименте. В это же время волновая функция не доступна для наблюдения, так как она является комплексной (в классической физике параметры, которые характеризуют состояние частицы, доступны для наблюдения).
Условие нормировки $\psi$- функции
Волновая функция определена с точностью до произвольного постоянного множителя. Данный факт не оказывает влияния на состояние частицы, которую $\psi$- функция описывает. Однако волновую функцию выбирают таким образом, что она удовлетворяет условию нормировки:
где интеграл берут по всему пространству или по области, в которой волновая функция не равна нулю. Условие нормировки (2) значит то, что во всей области, где $\psi\ne 0$ частица достоверно присутствует. Волновую функцию, которая подчинятся условию нормировки, называют нормированной. Если ${\left|\psi\right|}^2=0$, то данное условие означает, что частицы в исследуемой области наверняка нет.
Нормировка вида (2) возможна при дискретном спектре собственных значений.
Условие нормировки может оказаться не осуществимым. Так, если $\psi$ -- функция является плоской волной де-Бройля и вероятность нахождения частицы является одинаковой для всех точек пространства. Данные случаи рассматривают как идеальную модель, в которой частица присутствует в большой, но имеющей ограничения области пространства.
Принцип суперпозиции волновой функции
Данный принцип является одним их основных постулатов квантовой теории. Его смысл в следующем: если для некоторой системы возможны состояния, описываемые волновыми функциями $\psi_1\ {\rm и}\ $ $\psi_2$, то для этой системы существует состояние:
где $C_{1\ }и\ C_2$ -- постоянные коэффициенты. Принцип суперпозиции подтверждается эмпирически.
Можно говорить о сложении любого количества квантовых состояний:
где ${\left|C_n\right|}^2$ -- вероятность того, что система обнаруживается в состоянии, которое описывается волновой функцией $\psi_n.$ Для волновых функций, подчиненных условию нормировки (2) выполняется условие:
Стационарные состояния
В квантовой теории особую роль имеют стационарные состояния (состояния в которых все наблюдаемые физические параметры не изменяются во времени). (Сама волновая функция принципиально не наблюдаема). В стационарном состоянии $\psi$- функция имеет вид:
где $\omega =\frac{E}{\hbar }$, $\psi\left(\overrightarrow{r}\right)$ не зависит от времени, $E$- энергия частицы. При виде (3) волновой функции плотность вероятности ($P$) является постоянной времени:
Из физических свойств стационарных состояний следуют математические требования к волновой функции $\psi\left(\overrightarrow{r}\right)\to \ (\psi(x,y,z))$.
Математические требования к волновой функции для стационарных состояний
$\psi\left(\overrightarrow{r}\right)$- функция должна быть во всех точках:
- непрерывна,
- однозначна,
- конечна.
Если потенциальная энергия имеет поверхность разрыва, то на подобных поверхностях функция $\psi\left(\overrightarrow{r}\right)$ и ее первая производная должны оставаться непрерывными. В области пространства, где потенциальная энергия становится бесконечной, $\psi\left(\overrightarrow{r}\right)$ должна быть равна нулю. Непрерывность функции $\psi\left(\overrightarrow{r}\right)$ требует, чтобы на любой границе этой области $\psi\left(\overrightarrow{r}\right)=0$. Условие непрерывности накладывается на частные производные от волновой функции ($\frac{\partial \psi}{\partial x},\ \frac{\partial \psi}{\partial y},\frac{\partial \psi}{\partial z}$).
Пример 1
Задание: Для некоторой частицы задана волновая функция вида: $\psi=\frac{A}{r}e^{-{r}/{a}}$, где $r$ -- расстояние от частицы до центра силы (рис.1), $a=const$. Примените условие нормировки, найдите нормировочный коэффициент A.
Рисунок 1.
Решение:
Запишем условие нормировки для нашего случая в виде:
\[\int{{\left|\psi\right|}^2dV=\int{\psi\psi^*dV=1\left(1.1\right),}}\]
где $dV=4\pi r^2dr$ (см.рис.1 Из условий понятно, что задача обладает сферической симметрией). Из условий задачи имеем:
\[\psi=\frac{A}{r}e^{-{r}/{a}}\to \psi^*=\frac{A}{r}e^{-{r}/{a}}\left(1.2\right).\]
Подставим $dV$ и волновые функции (1.2) в условие нормировки:
\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=1\left(1.3\right).}\]
Проведем интегрирование в левой части:
\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=2\pi A^2a=1\left(1.4\right).}\]
Из формулы (1.4) выразим искомый коэффициент:
Ответ: $A=\sqrt{\frac{1}{2\pi a}}.$
Пример 2
Задание: Каково наиболее вероятное расстояние ($r_B$) электрона от ядра, если волновая функция, которая описывает основное состояние электрона в атоме водорода может быть определена как: $\psi=Ae^{-{r}/{a}}$, где $r$- расстояние от электрона до ядра, $a$ -- первый Боровский радиус?
Решение:
Используем формулу, которая определяет вероятность присутствия микрочастицы в объеме $dV$ в момент времени $t$:
где $dV=4\pi r^2dr.\ $Следователно, имеем:
В таком случае, $p=\frac{dP}{dr}$ запишем как:
Для определения наиболее вероятного расстояния производную $\frac{dp}{dr}$ приравняетм к нулю:
\[{\left.\frac{dp}{dr}\right|}_{r=r_B}=8\pi rA^2e^{-{2r}/{a}}+4\pi r^2A^2e^{-{2r}/{a}}\left(-\frac{2}{a}\right)=8\pi rA^2e^{-{2r}/{a}}\left(1-\frac{r}{a}\right)=0(2.4)\]
Так как решение $8\pi rA^2e^{-{2r_B}/{a}}=0\ \ {\rm при}\ \ r_B\to \infty $, нам не подходит, то отсается:
Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.
Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону (т.е. е - iωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн (немецкий физик) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или -функцией (пси - функцией).
Волновая функция - функция координат и времени.
Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.
Ψ * - функция комплексно сопряженная с Ψ
(z = a + ib, z * =a- ib, z * - комплексно сопряженное)
Если частица находится в конечном объеме V, то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)
Р
=
1
В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,
Условие нормировки
интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).
- функция должна быть
1) конечной (так как Р не может быть больше1),
2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).
непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),
Волновая функция удовлетворяет принципу суперпозиции : если система может находится в различных состояниях, описываемых волновыми функциями 1 , 2 ... n , то она может находится в состоянии , описываемой линейной комбинаций этих функций:
С n (n=1,2...) - любые числа.
С помощью волновой функции вычисляются средние значения любой физической величины частицы
§5 Уравнение Шредингера
Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.
(1)
Временное уравнение Шредингера.
Набла - оператор Лапласа
Потенциальная функция частицы в силовом поле,
Ψ(y,z,t) - искомая функция
Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:
(2)
Е - полная энергия частицы, постоянная в случае стационарного поля.
Подставив (2) (1):
(3)
Уравнение Шредингера для стационарных состояний.
Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.
Граничные условия:
волновые функции должны быть регулярными , т.е.
1)конечными;
2) однозначными;
3) непрерывными.
Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр - дискретный , если непрерывные - сплошной или непрерывный .