Температура мера средней кинетической энергии формула. Абсолютная температура
Представляет собой ту энергию, которая определяется скоростью движения различных точек, принадлежащих этой системе. При этом следует различать энергию, которая характеризует поступательное движение и движение вращательное. При этом, средняя кинетическая энергия - это средняя разность между совокупной энергией всей системы и ее энергией покоя, то есть, в сущности, ее величина является средней величиной
Ее физическая величина определяется по формуле 3 / 2 кТ, в которой обозначены: Т - температура, k - константа Больцмана. Эта величина может служить своеобразным критерием для сравнения (эталоном) для энергий, заключенных в различных типах теплового движения. К примеру, средняя кинетическая энергия для молекул газа при исследовании поступательного движения , равна 17 (- 10) нДж при температуре газа 500 С. Как правило, наибольшей энергией при поступательном движении обладают электроны, а вот энергия нейтральных атомов и ионов и значительно меньше.
Данная величина, если мы рассматриваем любой раствор, газ или жидкость, находящуюся при данной температуре, имеет постоянное значение. Такое утверждение справедливо и для коллоидных растворов.
Несколько иначе обстоит дело с твердыми веществами. В этих веществах средняя кинетическая энергия любой частицы слишком мала для того, чтобы преодолеть силы молекулярного притяжения, а потому она может только совершать движение вокруг некой точки, которая условно фиксирует определенное равновесное положение частицы на протяжении длительного отрезка времени. Это свойство и позволяет твердому веществу быть достаточно устойчивым по форме и объему.
Если мы рассматриваем условия: поступательное движение и то здесь средняя кинетическая энергия не является величиной, зависимой от а потому определяется как значение, прямо пропорциональное значению
Все эти суждения мы привели с той целью, чтобы показать, что они справедливы для всех типов агрегатных состояний вещества - в любом из них температура выступает в качестве основной характеристики, отражающей динамику и интенсивность теплового движения элементов. А в этом состоит сущность молекулярно-кинетической теории и содержание понятия теплового равновесия.
Как известно, если два физических тела приходят во взаимодействие друг с другом, то между ними возникает процесс теплообмена. Если же тело представляет собой замкнутую систему, то есть не взаимодействует ни с какими телами, то его теплообменный процесс будет длиться столько времени, сколько потребуется для выравнивания температур этого тела и окружающей среды . Такое состояние называют термодинамическим равновесием. Этот вывод многократно был подтвержден результатами экспериментов. Чтобы определить среднюю кинетическую энергию, следует обратиться к характеристикам температуры данного тела и его теплообменных свойств.
Важно также учитывать, что микропроцессы внутри тел не заканчиваются и тогда, когда тело вступает в термодинамическое равновесие. В этом состоянии внутри тел происходит перемещение молекул, изменение их скоростей, удары и столкновения. Поэтому выполняется только одно из нескольких наших утверждений - объем тела, давление (если речь идет о газе), могут различаться, но вот температура все равно будет оставаться величиной постоянной. Этим еще раз подтверждается утверждение, что средняя кинетическая энергия теплового движения в определяется исключительно показателем температуры.
Эту закономерность установил в ходе опытов Ж. Шарль в 1787 году. Проводя опыты, он заметил, что при нагреве тел (газов) на одинаковую величину, давление их меняется в соответствии с прямо пропорциональным законом. Это наблюдение дало возможность создать много полезных приборов и вещей, в частности - газовый термометр.
Представляем формулу основного уравнения молекулярно-кинетической теории (МКТ) газов:
(где n = N V – это концентрация частиц в газе, N – это число частиц, V – это объем газа, 〈 E 〉 – это средняя кинетическая энергия поступательного движения молекул газа, υ k v – это средняя квадратичная скорость, m 0 – это масса молекулы) связывает давление – макропараметр, достаточно просто измеряющийся с такими микропараметрами, как средняя энергия движения отдельной молекулы (или в другом выражении), как масса частицы и ее скорость. Но находя только лишь давление, нельзя установить кинетические энергии частиц отдельно от концентрации. Поэтому для нахождения в полном объеме микропараметров нужно знать еще какую-то физическую величину , связанную с кинетической энергией частиц, составляющих газ. За данную величину можно взять термодинамическую температуру.
Газовая температура
Для определения газовой температуры нужно вспомнить важное свойство, которое сообщает о том, что в условиях равновесия средняя кинетическая энергия молекул в смеси газов одинаковая для различных компонентов данной смеси. Из данного свойства следует то, что если 2 газа в различных сосудах находятся в тепловом равновесии, тогда средние кинетические энергии молекул данных газов одинаковые. Это свойство мы и будем использовать. К тому же в ходе экспериментов доказано, что для любых газов (при неограниченном числе), которые находятся в состоянии теплового равновесия, справедливо следующее выражение:
С учетом вышесказанного, используем (1) и (2) и получаем:
Из уравнения (3) следует, что величина θ , которой мы обозначили температуру, вычисляется в Д ж, в чем измеряется также и кинетическая энергия. В лабораторных работах температура в системе измерения вычисляется в кельвинах. Поэтому введем коэффициент, который уберет данное противоречие. Он обозначается k , измеряется в Д ж К и равняется 1 , 38 · 10 - 23 . Данный коэффициент называется постоянной Больцмана. Таким образом:
Определение 1
θ = k T (4) , где T – это термодинамическая температура в кельвинах .
Связь термодинамической температуры и средней кинетической энергией теплового движения молекул газа выражается формулой:
E = 3 2 k T (5) .
Из уравнения (5) видно, что средняя кинетическая энергия теплового движения молекул прямо пропорциональна температуре газа. Температура является абсолютной величиной. Физический смысл температуры заключается в том, что она, с одной стороны, определяется средней кинетической энергией, которая приходится на 1 молекулу. А с другой стороны, температура – это характеристика системы в целом. Таким образом, уравнение (5) показывает связь параметров макромира с параметрами микромира.
Определение 2
Известно, что температура – это мера средней кинетической энергии молекул.
Можно установить температуру системы, а затем рассчитать энергию молекул.
В условиях термодинамического равновесия все составляющие системы характеризуются одинаковой температурой.
Определение 3
Температура, при которой средняя кинетическая энергия молекул равняется 0 , давление идеального газа равняется 0 , называется абсолютным нулем температур . Абсолютная температура никогда не является отрицательной.
Пример 1
Необходимо найти среднюю кинетическую энергию поступательного движения молекулы кислорода, если температура T = 290 K . А также найти среднюю квадратичную скорость капельки воды диаметра d = 10 - 7 м, взвешенной в воздухе.
Решение
Найдем среднюю кинетическую энергию движения молекулы кислорода по уравнению, связывающему энергию и температуру:
E = 3 2 k T (1 . 1) .
Поскольку все величины заданы в системе измерения, проведем вычисления:
E = 3 2 · 1 , 38 · 10 - 23 · 10 - 7 = 6 · 10 - 21 Д ж.
Перейдем ко второй части задания. Положим, что капелька, взвешенная в воздухе, – это шар (рисунок
1
). Значит, массу капельки можно рассчитать как:
m = ρ · V = ρ · π d 3 6 .
Рисунок 1
Найдем массу капельки воды. Согласно справочных материалов, плотность воды в нормальных условиях равняется ρ = 1000 к г м 3 , тогда:
m = 1000 · 3 , 14 6 10 - 7 3 = 5 , 2 · 10 - 19 (к г) .
Масса капельки чрезмерно маленькая, поэтому, сама капелька сравнима с молекулой газа, и тогда можно использовать при расчетах формулу средней квадратичной скорости капли:
E = m υ k υ 2 2 (1 . 2) ,
где 〈 E 〉 мы уже установили, а из (1 . 1) понятно, что энергия не зависит от разновидности газа, а зависит только лишь от температуры. Значит, мы можем применить полученную величину энергии. Найдем из (1 . 2) скорость:
υ k υ = 2 E m = 6 · 2 E π ρ d 3 = 3 2 k T π ρ d 3 (1 . 3) .
Рассчитаем:
υ k υ = 2 · 6 · 10 - 21 5 , 2 · 10 - 19 = 0 , 15 м с
Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равняется 6 · 10 - 21 Д ж. Средняя квадратичная скорость капельки воды при заданных условиях равняется 0 , 15 м / с.
Пример 2
Средняя энергия поступательного движения молекул идеального газа равняется 〈 E 〉 , а давление газа p . Необходимо найти концентрацию частиц газа.
Решение
В основу решения задачи положим уравнение состояния идеального газа:
p = n k T (2 . 1) .
Прибавим к уравнению (2 . 1) уравнение связи средней энергии поступательного движения молекул и температуры системы:
E = 3 2 k T (2 . 2) .
Из (2 . 1) выражаем необходимую концентрацию:
n = p k T 2 . 3 .
Из (2 . 2) выражаем k T:
k T = 2 3 E (2 . 4) .
Подставляем (2 . 4) в (2 . 3) и получаем:
Ответ: Концентрацию частиц можно найти по формуле n = 3 p 2 E .
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Тема: «Температура. Абсолютная температура. Температура - мера средней кинетической энергии молекул. Измерение скоростей молекул газа»

Макроскопитечские параметры
Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения (V, p, t), называют макроскопическими параметрами.

ТЕМПЕРАТУРА
Температура - величина, характеризующая состояние теплового равновесия.
Измерение температуры
Необходимо привести тело в тепловой контакт с термометром;
Термометр должен иметь массу значительно меньше массы тела;
Показания термометра следует отсчитывать после наступления теплового равновесия.
Тепловым равновесием называют такое состояние тел, при котором все макроскопические параметры сколь угодно долго остаются неизменными


ФИЗИЧЕСКИЙ СМЫСЛ ТЕМПЕРАТУРЫ
Температурой называют скалярную величину, характеризующую интенсивность теплового движения молекул изолированной системы в условиях теплового равновесия, пропорциональную средней кинетической энергии поступательного движения молекул.




Решение задач
- Найти число молекул в 1 кг газа, средняя квадратичная скорость которых при абсолютной температуре Т равна v = √v2.
- Найти, во сколько раз средняя квадратичная скорость пылинки массой 1,75 ⋅ 10-12 кг, взвешенной в воздухе, меньше средней квадратичной скорости движения молекул воздуха.
- Определить среднюю кинетическую энергию и концентрацию молекул одноатомного газа при температуре 290 К и давлении 0,8 МПа.

Решение задач
- При вращении прибора Штерна с частотой 45 с -1 среднее смещение полоски серебра, обусловленное вращением, составляло 1,12 см. Радиусы внутреннего и внешнего цилиндров соответственно равны 1,2 и 16 см. Найти среднюю квадратичную скорость атомов серебра из данных опыта и сравнить ее с теоретическим значением, если температура накала платиновой нити равна 1500 К.

Домашнее задание
- Параграфы: 60-61
На практике для описания процессов, происходящих в газах, используют макроскопические параметры - давление р , объем V итемпературу Т . Эти величины характеризуют состояние газа и легко измеряются различными приборами. Между ними устанавливаются соотношения в виде газовых законов , которые мы рассмотрим позже.
Понятие температуры тесно связано с понятием теплового равновесия . Тепловое равновесие - это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура - это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.
Для измерения температуры используются физические приборы - термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются известными. По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды - 100 °С.
Английский физик У. Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы - шкалы Кельвина . В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:
T = t + 273,15. (7.10)
В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой K.
Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.
Экспериментально доказано, что давление разреженного газа в сосуде постоянного объема V изменяется прямо пропорционально его абсолютной температуре: p ~ T. С другой стороны, опыт показывает, что при неизменных объеме V и температуре T давление газа изменяется прямо пропорционально концентрации n молекул газа, т.е. числу молекул газа в единице объема. Для любого разреженного газа справедливо соотношение:
где k - некоторая универсальная для всех газов постоянная величина. Ее называют постоянной Больцмана, в честь австрийского физика Л. Больцмана, одного из создателей молекулярно-кинетической теории. Постоянная Больцмана - одна из фундаментальных физических констант. Ее численное значение в СИ равно:
k = 1,38·10 -23 Дж/К. (7.12)
Сравнивая соотношения (7.11) и (7.9), можно получить:
Средняя кинетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре. Таким образом, температура есть мера средней кинетической энергии поступательного движения молекул .
Следует обратить внимание на то, что средняя кинетическая энергия поступательного движения молекулы не зависит от ее массы. Броуновская частица, взвешенная в жидкости или газе, обладает такой же средней кинетической энергией, как и отдельная молекула, масса которой на много порядков меньше массы броуновской частицы. Этот вывод распространяется и на случай, когда в сосуде находится смесь химически невзаимодействующих газов, молекулы которых имеют разные массы. В состоянии равновесия молекулы разных газов будут иметь одинаковые средние кинетические энергии теплового движения, определяемые только температурой смеси. Давление смеси газов на стенки сосуда будет складываться из парциальных давлений каждого газа:
В этом соотношении n 1 , n 2 , n 3 , … - концентрации молекул различных газов в смеси. Это соотношение выражает на языке молекулярно-кинетической теории экспериментально установленный в начале XIX столетия закон Дальтона : давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений .