Как работает закон сохранения импульса. Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

Проделаем несколько несложных преобразований с формулами. По второму закону Ньютона силу можно найти: F=m*a. Ускорение находится следующим образом: a=v⁄t . Таким образом получаем: F= m*v /t.

Определение импульса тела: формула

Выходит, что сила характеризуется изменением произведения массы на скорость во времени. Если обозначить это произведение некой величиной, то мы получим изменение этой величины во времени как характеристику силы. Эту величину назвали импульсом тела. Импульс тела выражается формулой:

где p импульс тела, m масса, v скорость.

Импульс это векторная величина, при этом его направление всегда совпадает с направлением скорости. Единицей импульса является килограмм на метр в секунду (1 кг*м/с).

Что же такое импульс тела: как понять?

Попробуем по-простому, «на пальцах» разобраться, что такое импульс тела. Если тело покоится, то его импульс равен нулю. Логично. Если скорость тела изменяется, то у тела появляется некий импульс, который характеризует величину приложенной к нему силы.

Если воздействие на тело отсутствует, но оно движется с некоторой скоростью, то есть имеет некий импульс, то его импульс означает, какое воздействие способно оказать данное тело при взаимодействии с другим телом.

В формулу импульса входит масса тела и его скорость. То есть чем большей массой и/или скоростью обладает тело, тем большее воздействие оно может оказать. Это понятно и из жизненного опыта.

Чтобы сдвинуть тело небольшой массы, нужна небольшая сила. Чем больше масса тела, тем большее придется приложить усилие. То же самое касается и скорости, которую сообщают телу. В случае же воздействия самого тела на другое, импульс также показывает величину, с которой тело способно действовать на другие тела. Эта величина напрямую зависит от скорости и массы исходного тела.

Импульс при взаимодействии тел

Возникает еще один вопрос: что произойдет с импульсом тела при его взаимодействии с другим телом? Масса тела измениться не может, если оно остается целым, а вот скорость может измениться запросто. При этом скорость тела изменится в зависимости от его массы.

В самом деле, понятно, что при столкновении тел с очень разными массами, скорость их изменится по-разному. Если летящий на большой скорости футбольный мяч врежется в неготового к этому человека, например зрителя, то зритель может упасть, то есть приобретет некоторую небольшую скорость, но точно не полетит как мячик.

А все потому, что масса зрителя намного больше массы мяча. Но при этом сохранится неизменным общий импульс этих двух тел.

Закон сохранения импульса: формула

В этом и заключается закон сохранения импульса: при взаимодействии двух тел их общий импульс остается неизменным. Закон сохранения импульса действует только в замкнутой системе, то есть в такой системе, в которой нет воздействия внешних сил или их суммарное действие равно нулю.

В реальности практически всегда на систему тел оказывается стороннее воздействие, но общий импульс, как и энергия, не пропадает в никуда и не возникает из ниоткуда, он распределяется между всеми участниками взаимодействия.

Лекция 10. Закон сохранения импульса и реактивное движение.

Движение в природе не возникает из ничего и не исчезает – оно передаётся от одного объекта к другому. При определённых условиях, движение в состоянии накапливаться, но, высвобождаясь, обнаруживает своё свойство к сохранению.

Задумывались ли вы когда-нибудь почему:

  • Мяч, летящий с большой скоростью , футболист может остановить ногой или головой, а вагон, движущийся по рельсам даже очень медленно, человек не остановит (масса вагона намного больше массы мяча).
  • Стакан с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то стакан движется вместе с бумагой. а если резко дернуть полоску бумаги - стакан остается неподвижный. (стакан останется неподвижным из-за инерции - явления сохранения скорости тела постоянной при отсутствии действия на него других тел)
  • Теннисный мяч, попадая в человека, вреда не причиняет, однако пуля, которая меньше по массе, о движется с большой скоростью (600-800 м/с), оказывается смертельно опасной (скорость пули намного болше, чем мяча).

Значит, результат взаимодействия тел зависит и от массы тел и от их скорости одновременно.

Еще великий французский философ, математик, физик и физиолог, основатель новоевропейского рационализма и один из влиятельнейших метафизиков Нового времени ввел такое понятие как "количество движения". Он же высказал закон сохранения количества движения, дал понятие импульса силы.

"Я принимаю, что во Вселенной... есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает." Р. Декарт

Декарт, судя по его высказываниям, понимал фундаментальное значение введенного им в XVII веке понятия количества движения - или импульса тела - как произведения массы тела на величину его скорости. И хотя он совершил ошибку, не рассматривая количество движения как векторную величину, сформулированный им закон сохранения количества движения выдержал с честью проверку временем. В начале XVIII века ошибка была исправлена, и триумфальное шествие этого закона в науке и технике продолжается по сию пору.

Как один из основополагающих законов физики, он дал неоценимое орудие исследования ученым, ставя запрет одним процессам и открывая дорогу другим. Взрыв, реактивное движение, атомные и ядерные превращения - везде превосходно работает этот закон. А в скольких самых обиходных ситуациях помогает разобраться понятие импульса, сегодня, мы надеемся, вы убедитесь сами.

Количество движения - мера механического движения , равная для материальной точки произведению её массы m на скорость v. Количество движения mv - величина векторная, направленная так же, как скорость точки. Иногда Количество движения называют ещё импульсом . Количество движения, в любой момент времени, характеризуется скоростью объекта определённой массы при перемещении его из одной точки пространства в другую.

Импульсом тела (или количеством движения) называют векторную величину, равную произведению массы тела на его скорость:



Импульс тела направлен в ту же сторону, что и скорость тела .

Единицей измерения импульса в СИ является 1 кг·м/с.

Изменение импульса тела происходит при взаимодействии тел, например, при ударах. (Видео "Бильярдные шары). При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу.

Виды соударений:

Абсолютно неупругий удар - это такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.


Пуля застревает в бруске и далее они движутся как одно целое Кусок пластелина прилипает к стене

Абсолютно упругий удар - это столкновение, при котором сохраняется механическая энергия системы тел.


Шарики после столкновения отскакивают друг от друга в разные стороны Мяч отскакивает от стены

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила F.

Под действием этой силы скорость тела изменилась на

Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона) следует:

Физическая величина, равная произведению силы на время ее действия , называется импульсом силы :

Импульс силы также является векторной величиной .

Импульс силы равен изменению импульса тела ( II закон Ньютона в импульсной форме ):

Обозначив импульс тела буквой p второй закон Ньютона можно записать в виде:

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу.

Для определения изменения импульса удобно использовать диаграмму импульсов, на которой изображаются вектора импульсов, а также вектор суммы импульсов, построенный по правилу параллелограмма.

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которой мы изучаем, называется механической системой или просто системой.

В механике часто встречаются задачи, когда необходимо одновременно рассматривать несколько тел, движущихся по-разному. Таковы, например, задачи о движении небесных тел , о соударении тел, об отдаче огнестрельного оружия, где и снаряд и пушка начинают двигаться после выстрела, и т. д. В этих случаях говорят о движении системы тел: солнечной системы, системы двух соударяющихся тел, системы «пушка - снаряд» и т. п. Между телами системы действуют некоторые силы. В солнечной системе это силы всемирного тяготения, в системе соударяющихся тел - силы упругости, в системе «пушка - снаряд» - силы, создаваемые пороховыми газами.

Импульс системы тел будет равен сумме импульсов каждого из тел. входящих в систему.

Кроме сил, действующих со стороны одних тел системы на другие (« внутренние силы »), на тела могут действовать еще силы со стороны тел, не принадлежащих системе («внешние» силы); например, на соударяющиеся бильярдные шары действует еще сила тяжести и упругость стола, на пушку и снаряд также действует сила тяжести и т. п. Однако в ряде случаев всеми внешними силами можно пренебрегать. Так, при изучении соударения катящихся шаров силы тяжести уравновешены для каждого шара в отдельности и потому не влияют на их движение; при выстреле из пушки сила тяжести окажет свое действие на полет снаряда только после вылета его из ствола, что не скажется на величине отдачи. Поэтому часто можно рассматривать движения системы тел, полагая, что внешние силы отсутствуют.

Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

ЗАМКНУТАЯ СИСТЕМА ЭТО СИСТЕМА ТЕЛ, КОТОРЫЕ ВЗАИМОДЕЙСТВУЮТ ТОЛЬКО ДРУГ С ДРУГОМ .

Закон сохранения импульса.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках:

  1. Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел.
  2. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике - при забивании свай, ковке металлов и т.д

Как мы уже говорили, в точности замкнутых систем тел не существует. Поэтому возникает вопрос: в каких случаях можно применять закон сохранения импульса к незамкнутым системам тел? Рассмотрим эти случаи.

1. Внешние силы уравновешивают друг друга или ими можно пренебречь

С этим случаем мы уже познакомились в предыдущем параграфе на примере двух взаимодействующих тележек.

В качестве второго примера вспомним первоклассника и десятиклассника, соревнующихся в перетягивании каната, стоя на скейтбордах (рис. 26.1). При этом внешние силы также уравновешивают друг друга, а силой трения можно пренебречь. Поэтому сумма импульсов соперников сохраняется.

Пусть в начальный момент школьники покоились. Тогда их суммарный импульс в начальный момент равен нулю. Согласно закону сохранения импульса он останется равным нулю и тогда, когда они будут двигаться. Следовательно,

где 1 и 2 – скорости школьников в произвольный момент (пока действия всех других тел компенсируются).

1. Докажите, что отношение модулей скоростей мальчиков обратно отношению их масс:

v 1 /v 2 = m 2 /m 1 . (2)

Обратите внимание: это соотношение будет выполняться независимо от того, как взаимодействуют соперники. Например, не имеет значения, тянут они канат рывками или плавно, перебирает канат руками только кто-то один из них или оба.

2. На рельсах стоит платформа массой 120 кг, а на ней – человек массой 60 кг (рис. 26.2, а). Трением между колесами платформы и рельсами можно пренебречь. Человек начинает идти вдоль платформы вправо со скоростью 1,2 м/с относительно платформы (рис. 26.2, б).

Начальный суммарный импульс платформы и человека равен нулю в системе отсчета, связанной с землей. Поэтому применим закон сохранения импульса в этой системе отсчета.

а) Чему равно отношение скорости человека к скорости платформы относительно земли?
б) Как связаны модули скорости человека относительно платформы, скорости человека относительно земли и скорости платформы относительно земли?
в) С какой скоростью и в каком направлении будет двигаться платформа относительно земли?
г) Чему будут равны скорости человека и платформы относительно земли, когда он дойдет до ее противоположного конца и остановится?

2. Проекция внешних сил на некоторую ось координат равна нулю

Пусть, например, по рельсам со скоростью катится тележка с песком массой m т. Будем считать, что трением между колесами тележки и рельсами можно пренебречь.

В тележку падает груз массой m г (рис. 26.3, а), и тележка катится далее с грузом (рис. 26.3, б). Обозначим конечную скорость тележки с грузом к.

Введем оси координат, как показано на рисунке. На тела действовали только вертикально направленные внешние силы (сила тяжести и сила нормальной реакции со стороны рельсов). Эти силы не могут изменить горизонтальные проекции импульсов тел. Поэтому проекция суммарного импульса тел на горизонтально направленную ось х осталась неизменной.

3. Докажите, что конечная скорость тележки с грузом

v к = v(m т /(m т + m г)).

Мы видим, что скорость тележки после падения груза уменьшилась.

Уменьшение скорости тележки объясняется тем, что часть своего начального горизонтально направленного импульса она передала грузу, разгоняя его до скорости к. Когда тележка разгоняла груз, он, согласно третьему закону Ньютона, тормозил тележку.

Обратите внимание на то, что в рассматриваемом процессе суммарный импульс тележки и груза не сохранялся. Неизменной осталась лишь проекция суммарного импульса тел на горизонтально направленную ось x.

Проекция же суммарного импульса тел на вертикально направленную ось у в данном процессе изменилась: перед падением груза она была отлична от нуля (груз двигался вниз), а после падения груза она стала равной нулю (оба тела движутся горизонтально).

4. В стоящую на рельсах тележку с песком массой 20 кг влетает груз массой 10 кг. Скорость груза непосредственно перед попаданием в тележку равна 6 м/с и направлена под углом 60º к горизонту (рис. 26.4). Трением между колесами тележки и рельсами можно пренебречь.


а) Какая проекция суммарного импульса в данном случае сохраняется?
б) Чему равна горизонтальная проекция импульса груза непосредственно перед его попаданием в тележку?
в) С какой скоростью будет двигаться тележка с грузом?

3. Удары, столкновения, разрывы, выстрелы

В этих случаях происходит значительное изменение скорости тел (а значит, и их импульса) за очень краткий промежуток времени. Как мы уже знаем (см. предыдущий параграф), это означает, что в течение этого промежутка времени тела действуют друг на друга с большими силами. Обычно эти силы намного превышают внешние силы, действующие на тела системы.
Поэтому систему тел во время таких взаимодействий можно с хорошей степенью точности считать замкнутой, благодаря чему можно использовать закон сохранения импульса.

Например, когда во время пушечного выстрела ядро движется внутри ствола пушки, силы, с которыми действуют друг на друга пушка и ядро, намного превышают горизонтально направленные внешние силы, действующие на эти тела.

5. Из пушки массой 200 кг выстрелили в горизонтальном направлении ядром массой 10 кг (рис. 26.5). Ядро вылетело из пушки со скоростью 200 м/с. Какова скорость пушки при отдаче?


При столкновениях тела также действуют друг на друга с довольно большими силами в течение краткого промежутка времени.

Наиболее простым для изучения является так называемое абсолютно неупругое столкновение (или абсолютно неупругий удар). Так называют столкновение тел, в результате которого они начинают двигаться как единое целое. Именно так взаимодействовали тележки в первом опыте (см. рис. 25.1), рассмотренном в предыдущем параграфе, Найти общую скорость тел после абсолютно неупругого столкновения довольно просто.

6. Два пластилиновых шарика массой m 1 и m 2 движутся со скоростями 1 и 2 . В результате столкновения они стали двигаться как единое целое. Докажите, что их общую скорость можно найти с помощью формулы

Обычно рассматривают случаи, когда тела до столкновения движутся вдоль одной прямой. Направим ось x вдоль этой прямой. Тогда в проекциях на эту ось формула (3) принимает вид

Направление общей скорости тел после абсолютно неупругого столкновения определяется знаком проекции v x .

7. Объясните, почему из формулы (4) следует, что скорость «объединенного тела» будет направлена так же, как начальная скорость тела с большим импульсом.

8. Две тележки движутся навстречу друг другу. При столкновении они сцепляются и движутся как единое целое. Обозначим массу и скорость тележки, которая вначале ехала вправо, m п и п, а массу и скорость тележки, которая вначале ехала влево, m л и л. В каком направлении и с какой скоростью будут двигаться сцепленные тележки, если:
а) m п = 1 кг, v п = 2 м/с, m л = 2 кг, v л = 0,5 м/с?
б) m п = 1 кг, v п = 2 м/с, m л = 4 кг, v л = 0,5 м/с?
в) m п = 1 кг, v п = 2 м/с, m л = 0,5 кг, v л = 6 м/с?


Дополнительные вопросы и задания

В заданиях к этому параграфу предполагается, что трением можно пренебречь (если не указан коэффициент трения).

9. На рельсах стоит тележка массой 100 кг. Бегущий вдоль рельсов школьник массой 50 кг с разбега запрыгнул на эту тележку, после чего она вместе со школьником стала двигаться со скоростью 2 м/с. Чему была равна скорость школьника непосредственно перед прыжком?

10. На рельсах недалеко друг от друга стоят две тележки массой M каждая. На первой из них стоит человек массой m. Человек перепрыгивает с первой тележки на вторую.
а) Скорость какой тележки будет больше?
б) Чему будет равно отношение скоростей тележек?

11. Из зенитного орудия, установленного на железнодорожной платформе, производят выстрел снарядом массой m под углом α к горизонту. Начальная скорость снаряда v0. Какую скорость приобретет платформа, если ее масса вместе с орудием равна M? В начальный момент платформа покоилась.

12. Скользящая по льду шайба массой 160 г ударяется о лежащую льдинку. После удара шайба скользит в прежнем направлении, но модуль ее скорости уменьшился вдвое. Скорость же льдинки стала равной начальной скорости шайбы. Чему равна масса льдинки?

13. На одном конце платформы длиной 10 м и массой 240 кг стоит человек массой 60 кг. Каково будет перемещение платформы относительно земли, когда человек перейдет к ее противоположному концу?
Подсказка. Примите, что человек идет с постоянной скоростью v относительно платформы; выразите через v скорость платформы относительно земли.

14. В лежащий на длинном столе деревянный брусок массой M попадает летящая горизонтально со скоростью и пуля массой m и застревает в нем. Сколько времени после этого брусок будет скользить по столу, если коэффициент трения между столом и бруском равен μ?

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин , вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

просмотров