Что такое излучение в физике? Определение, особенности, применение излучения в физике. Что такое тепловое излучение в физике
Введение……………………………………………………………………………..3
1. Виды излучений………………………………………………………………….5
2. Нормирование радиационной безопасности…………………………………10
3. Основные дозовые пределы….......................................................................13
4. Допустимые и контрольные уровни облучения…………………………………18
Заключение………………………………………………………………………….26
Список использованных источников……………………………………………….28
ВВЕДЕНИЕ
Среди вопросов, представляющих научный интерес, немногие приковывают к себе столь постоянное внимание общественности и вызывают так много споров, как вопрос о действии радиации на человека и окружающую среду .
К сожалению, достоверная научная информация по этому вопросу очень часто не доходит до населения, которое пользуется из-за этого всевозможными слухами. Слишком часто аргументация противников атомной энергетики опирается исключительно на чувства и эмоции, столь же часто выступления сторонников ее развития сводятся к мало обоснованным успокоительным заверениям.
Научный комитет ООН по действию атомной радиации собирает всю доступную информацию об источниках радиации и ее воздействии на человека и окружающую среду и анализирует ее. Он изучает широкий спектр естественных и созданных искусственно источников радиации, и его выводы могут удивить даже тех, кто внимательно следит за ходом публичных выступлений на эту тему.
Радиация действительно смертельно опасна. При больших дозах она вызывает серьезнейшие поражения тканей, а при малых может вызвать рак и индуцировать генетические дефекты, которые, возможно, проявятся у детей и внуков человека, подвергшегося облучению, или у его более отдаленных потомков.
Но для основной массы населения самые опасные источники радиации - это вовсе не те, о которых больше всего говорят. Наибольшую дозу человек получает от естественных источников радиации. Радиация, связанная с развитием атомной энергетики, составляет лишь малую долю радиации, порождаемой деятельностью человека; значительно большие дозы мы получаем от других, вызывающих гораздо меньше нареканий, форм этой деятельности, например от применения рентгеновских лучей в медицине. Кроме того, такие формы повседневной деятельности, как сжигание угля и использование воздушного транспорта, в особенности же постоянное пребывание в хорошо герметизированных помещениях, могут привести к значительному увеличению уровня облучения за счет естественной радиации. Наибольшие резервы уменьшения радиационного облучения населения заключены именно в таких «бесспорных» формах деятельности человека.
В настоящей работе освещены различные виды излучений, как от естественных, так и от техногенных источников, оказывающих воздействие на человека и окружающую среду, приведены нормативные источники информации о радиационной безопасности, дозовые пределы облучений и их допустимые и контрольные уровни.
ВИДЫ ИЗЛУЧЕНИЙ
Проникающая радиация представляет собой большую опасность для здоровья и жизни людей. В больших дозах она вызывает серьезные поражения тканей организма, развивается острая лучевая болезнь, в малых дозах – онкологические заболевания, провоцирует генетические дефекты. В природе существует ряд элементов, ядра атомов которых превращаются в ядра других элементов. Эти превращения сопровождаются излучением – радиоактивностью. Ионизирующее излучение представляет собой потоки элементарных частиц и квантов электромагнитных излучений, способных вызывать ионизацию атомов и молекул среды, в которой они распространяются.
Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма (рис. 1). Альфа-излучение, которое представляет собой поток тяжелых частиц, состоящих из нейтронов и протонов, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие α-частицы, не попадут внутрь организма через открытую рану, с пищей или с вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. Бета-излучение обладает большей проникающей способностью: оно проходит в ткани организма на глубину один - два сантиметра. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита. В силу очень высокой проникающей способности гамма-излучения представляют большую опасность для человека. Особенность ионизирующего излучения состоит в том, что его воздействие человек начнет ощущать лишь по прошествии некоторого времени.
Рис. 1. Три вида излучений и их проникающая способность
Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.
Основную часть облучения население земного шара получает от естественных источников радиации (рис. 2).
Рис. 2. Средние годовые эффективные эквивалентные дозы облучения от естественных и техногенных источников радиации (цифры указывают величину дозы в миллизивертах)
Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.
Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолетах – все это увеличивает уровень облучения за счет естественных источников радиации.
Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5 / 6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения (рис. 3).
Рис. 3. Средние годовые эффективные эквивалентные дозы облучения от естественных источников радиации (цифры указывают дозу в миллизивертах)
По некоторым данным 1 средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет примерно 350 микрозивертов, т.е. чуть больше средней индивидуальной дозы облучения из-за радиационного фона, создаваемого космическими лучами на уровне моря.
В среднем примерно 2 / 3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом.
Установлено, что из всех естественных источников радиации наибольшую опасность представляет радон – тяжелый газ без цвета и запаха. Он высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно отличается для разных точек Земного шара . Основное излучение от радона человек получает, находясь в закрытом помещении. Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, из стройматериалов, радон накапливается в помещении. Самые распространенные стройматериалы – дерево, кирпич и бетон – выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья, фосфогипса.
Еще один источник поступления радона в жилые помещения – вода и природный газ. Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья, даже при высоком содержании радона. Обычно люди употребляют кипяченую воду или в виде горячих напитков, а при кипячении радон практически полностью улетучивается. Большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или в парилке. В природный газ радон проникает под землей. В результате предварительной переработки и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона может возрасти, если кухонные плиты не снабжены вытяжкой. Следовательно, радон особенно опасен для малоэтажных зданий с тщательной герметизацией помещений (с целью сохранения тепла) и при использовании глинозема в качестве добавки к строительным материалам.
Другие источники радиации, представляющие опасность, к сожалению, созданы самим человеком. Радиация в настоящее время широко используется в различных областях: медицине, промышленности, сельском хозяйстве, химии, науке и т. д. Источниками искусственной радиации служат созданные с помощью ядерных реакторов и ускорителей искусственные радионуклиды, пучок нейтронов и заряженных частиц. Они получили название техногенных источников ионизирующего излучения. Все мероприятия, связанные с получением и применением искусственной радиации, строго контролируются. Особняком по своему воздействию на организм человека стоят испытания ядерного оружия в атмосфере, аварии на АЭС и ядерных реакторах и результаты их работы, проявляющиеся в радиоактивных осадках и радиоактивных отходах. При выпадении радиоактивных осадков в некоторых местностях Земли радиация может попадать внутрь организма человека непосредственно через сельскохозяйственную продукцию и питание.
Человек постоянно находится под воздействием разнообразных внешних факторов . Одни из них являются видимыми, например, погодные условия, и степень их воздействия можно контролировать. Другие же не видны человеческому глазу и носят название излучений. Каждый должен знать виды излучения, их роль и области применения.
Некоторые виды излучения человек может встретить повсеместно. Ярким примером являются радиоволны. Они представляют собой колебания электромагнитной природы, которые способны распределяться в пространстве со скоростью света. Такие волны несут в себе энергию от генераторов.
Источники радиоволн можно разделить на две группы.
- Природные, к ним относятся молнии и астрономические единицы.
- Искусственные, то есть созданные человеком. Они включают в себя излучатели с переменным током . Это могут быть приборы радиосвязи, вещания, компьютеры и системы навигации.
Кожа человека способна осаждать на своей поверхности этот вид волн, поэтому есть ряд негативных последствий их воздействия на человека. Радиоволновое излучение способно замедлить деятельность мозговых структур, а также вызвать мутации на генном уровне.
Для лиц, у которых установлен кардиостимулятор, такое воздействие смертельно опасно. У этих приборов имеется четкий максимально допустимый уровень излучения, подъем выше него вносит дисбаланс в работу системы стимулятора и ведет к его поломке.
Все влияния радиоволн на организм были изучены только на животных, прямого доказательства их негативного действия на человека нет, но способы защиты ученые все же ищут. Как таковых
эффективных способов
пока нет. Единственное, что можно посоветовать, так это держаться подальше от опасных приборов. Поскольку бытовые приборы, включенные в сеть, тоже создают вокруг себя радиоволновое поле, то просто необходимо отключать питание устройств, которыми человек не пользуется в данный момент.
Излучение инфракрасного спектра
Все виды излучения тем или иным образом связаны между собой. Некоторые из них видны человеческому глазу. Инфракрасное излучение примыкает к той части спектра, которую глаз человека может уловить. Оно не только освещает поверхность, но и способно ее нагревать.
Основным естественным источником ИК-лучей является солнце. Человеком созданы искусственные излучатели, посредство которых достигается необходимый тепловой эффект.
Теперь нужно разобраться, насколько полезным или вредным является такой вид излучения для человека. Практически все длинноволновое излучение инфракрасного спектра поглощается верхними слоями кожи, поэтому не только безопасно, но и способно повысить иммунитет и усилить восстановительные процессы в тканях.
Что касается коротких волн, то они могут уходить глубоко в ткани и вызывать перегрев органов. Так называемый тепловой удар является следствием воздействия коротких инфракрасных волн. Симптомы этой патологии известны почти всем:
- появление кружения в голове;
- чувство тошноты;
- возрастание пульса;
- нарушения зрения, характеризующиеся потемнением в глазах.
Как же уберечь себя от опасного влияния? Нужно соблюдать технику безопасности, пользуясь теплозащитной одеждой и экранами. Применение коротковолновых обогревателей должно быть четко дозировано, нагревательный элемент должен быть прикрыт теплоизолирующим материалом, при помощи которого достигается излучение мягких длинных волн.
Если задуматься, все виды излучения способны проникать в ткани. Но именно рентгеновское излучение дало возможность использовать это свойство на практике в медицине.
Истории наших читателей
Владимир
61 год
Если сравнить лучи рентгеновского происхождения с лучами света, то первые имеют очень большую длину, что позволяет им проникать даже через непрозрачные материалы. Такие лучи не способны отражаться и преломляться. Данный вид спектра имеет мягкую и жесткую составляющую. Мягкая состоит из длинных волн, способных полностью поглощаться тканями человека. Таким образом, постоянное воздействие длинных волн приводит к повреждению клеток и мутации ДНК.
Есть ряд структур, которые не способны пропустить через себя рентгеновские лучи. К ним относится, например, костная ткань и металлы. Исходя из этого и производятся снимки костей человека с целью диагностики их целостности.
В настоящее время созданы приборы, позволяющие не только делать фиксированный снимок, например, конечности, но и наблюдать за происходящими с ней изменениями «онлайн». Эти устройства помогаю врачу выполнить оперативное вмешательство на костях под контролем зрения, не производя широких травматичных разрезов. При помощи таких приборов можно исследовать биомеханику суставов.
Что касается негативного воздействия рентгеновских лучей, то длительный контакт с ними может привести к развитию лучевой болезни, которая проявляется рядом признаков:
- нарушения неврологического характера;
- дерматиты;
- снижение иммунитета;
- угнетение нормального кроветворения;
- развитие онкологической патологии;
- бесплодие.
Чтобы защитить себя от страшных последствий, при контакте с этим видом излучения нужно использовать экранирующие щиты и накладки из материалов, не пропускающих лучи.
Данный вид лучей люди привыкли называть попросту – свет. Этот вид излучения способен поглощаться объектом воздействия, частично проходя через него и частично отражаясь. Такие свойства широко применяются в науке и технике, особенно при изготовлении оптических приборов.
Все источники оптического излучения делятся на несколько групп.
- Тепловые, имеющие сплошной спектр. Тепло в них выделяется за счет тока или процесса горения. Это могут быть электрические и галогенные лампы накаливания, а также пиротехнические изделия и электродосветные приборы.
- Люминесцентные, содержащие газы, возбуждаемые потоками фотонов. Такими источниками являются энергосберегающие приборы и катодолюминесцентные устройства. Что касается радио- и хемилюминесцентных источников, то в них потоки возбуждаются за счет продуктов радиоактивного распада и химических реакций соответственно.
- Плазменные, чьи характеристики зависят от температуры и давления плазмы, образующейся в них. Это могут быть газоразрядные, ртутные трубчатые и ксеноновые лампы. Не исключением являются и спектральные источники, а также приборы импульсного характера.
Оптическое излучение на организм человека действует в комплексе с ультрафиолетовым, что провоцирует выработку меланина в коже. Таким образом, положительный эффект длится до тех пор, пока не будет достигнуто пороговое значение воздействия, за пределами которого находится риск ожогов и кожной онкопатологии.
Самым известным и широко применяемым излучением, воздействие которого можно встретить повсеместно, является ультрафиолетовое излучение. Данное излучение имеет два спектра, один из которых доходит до земли и участвует во всех процессах на земле. Второй задерживается слоем озона и не проходит через него. Слой озона обезвреживает этот спектр, тем самым выполняя защитную роль. Разрушение озонового слоя опасно проникновением вредных лучей на поверхность земли.
Естественный источник этого вида излучения – Солнце. Искусственных источников придумано огромное количество:
- Эритемные лампы, активизирующие выработку витамина Д в слоях кожи и помогающие лечению рахита.
- Солярии, не только позволяющие позагорать, но и имеющие лечебный эффект для людей с патологиями, вызванными недостатком солнечного света.
- Лазерные излучатели, используемые в биотехнологиях, медицине и электронике.
Что касается воздействия на организм человека, то оно двоякое. С одной стороны, недостаток ультрафиолета может вызвать различные болезни. Дозированная нагрузка таким излучением помогает иммунитету, работе мышц и легких, а также предотвращает гипоксию.
Все виды влияний делятся на четыре группы:
- способность убивать бактерий;
- снятие воспаления;
- восстановление поврежденных тканей;
- уменьшение боли.
К отрицательным воздействиям ультрафиолета можно отнести способность провоцировать рак кожи при длительном воздействии. Меланома кожи крайне злокачественный вид опухоли. Такой диагноз почти на 100 процентов означает грядущую смерть.
Что касается органа зрения, то чрезмерное воздействие лучей ультрафиолетового спектра повреждает сетчатку, роговицу и оболочки глаза. Таким образом, использовать этот вид излучения нужно в меру. Если при определенных обстоятельствах приходится длительно контактировать с источником ультрафиолетовых лучей , то необходимо защитить глаза очками, а кожу специальными кремами или одеждой.
Это так называемые космические лучи , несущие в себе ядра атомов радиоактивных веществ и элементов. Поток гамма-излучения имеет очень большую энергию и способен быстро проникать в клетки организма, ионизируя их содержимое. Разрушенные клеточные элементы действуют как яды, разлагаясь и отравляя весь организм. В процесс обязательно вовлекается ядро клеток, что ведет к мутациям в геноме. Здоровые клетки разрушаются, а на их месте образуются мутантные, не способные в полной мере обеспечить организм всем необходимым.
Данное излучение опасно тем, что человек его никак не ощущает. Последствия воздействия проявляются не сразу, а имеют отдаленное действие. В первую очередь страдают клетки кроветворной системы, волос, половых органов и лимфоидной системы.
Радиация очень опасна развитием лучевой болезни, но даже такому спектру нашли полезное применение:
- с его помощью стерилизуют продукты, оборудование и инструменты медицинского предназначения;
- измерение глубины подземных скважин;
- измерение длины пути космических аппаратов;
- воздействие на растения с целью выявления продуктивных сортов;
- в медицине такое излучение применяется для проведения лучевой терапии в лечении онкологии.
В заключение нужно сказать, что все виды лучей с успехом применяются человеком и являются необходимыми. Благодаря им существуют растения, животные и люди. Защита от чрезмерного воздействия должна быть приоритетным правилом при работе.
Ранее люди, чтобы объяснить то, что они не понимают, придумывали различные фантастические вещи - мифы, богов, религию, волшебных существ. И хотя в эти суеверия всё ещё верит большое количество людей, сейчас нам известно, что у всего есть своё объяснение. Одной из наиболее интересных, таинственных и удивительных тем является излучение. Что оно собой представляет? Какие его виды существуют? Что такое излучение в физике? Как оно поглощается? Можно ли защититься от излучения?
Общая информация
Итак, выделяют следующие виды излучений: волновое движение среды, корпускулярное и электромагнитное. Наибольшее внимание будет уделено последнему. Относительно волнового движения среды можно сказать, что оно возникает как результат механического движения определённого объекта, что вызывает последовательное разрежение или сжатие среды. В качестве примера можно привести инфразвук или ультразвук. Корпускулярное излучение - это поток атомных частиц, таких как электроны, позитроны, протоны, нейтроны, альфа, что сопровождается естественным и искусственным распадом ядер. Об этих двух пока и поговорим.
Влияние
Рассмотрим солнечное излучение . Это мощный оздоровительный и профилактический фактор. Совокупность сопутствующих физиологических и биохимических реакций, что протекают при участии света, назвали фотобиологическими процессами. Они берут участие в синтезе биологически важных соединений, служат для получения информации и ориентации в пространстве (зрение), а также могут вызывать вредные последствия, как то появление вредных мутаций, разрушение витаминов, ферментов, белков.
Об электромагнитном излучении
В дальнейшем статья будет посвящена исключительно нему. Что такое излучение в физике делает, как влияет на нас? ЭМИ представляет собой электромагнитные волны, что испускаются заряженными молекулами, атомами, частицами. В качестве крупных источников могут выступать антенны или другие излучающие системы. Длина волны излучения (частота колебания) вместе с источников оказывает решающее значение . Так, в зависимости от этих параметров выделяют гамма, рентгеновское, оптическое излучение. Последнее делится на целый ряд других подвидов. Так, это инфракрасное, ультрафиолетовое, радиоизлучение, а также свет. Диапазон находится в пределах до 10 -13 . Гамма-излучение генерируют возбуждённые атомные ядра. Рентгеновские лучи можно получить при торможении ускоренных электронов, а также при их переходе не свободные уровни. Радиоволны оставляют свой след во время движения по проводникам излучающих систем (например, антенн) переменных электрических токов.
Об ультрафиолетовом излучении
В биологическом отношении наиболее активными являются УФ-лучи. При попадании на кожу они могут вызывать местные изменения тканевых и клеточных белков. Кроме этого, фиксируется воздействие на рецепторы кожи. Оно рефлекторным путём влияет на целый организм. Поскольку это неспецифический стимулятор физиологических функций, то он оказывает благоприятное влияние на иммунную систему организма, а также на минеральный, белковый, углеводный и жировой обмен. Всё это проявляется в виде общеоздоровительного, тонизирующего и профилактического действия солнечного излучения. Следует упомянуть и об отдельных специфических свойствах, что есть у определённого диапазона волн. Так, влияние излучений на человека при длине от 320 до 400 нанометров способствует эритемно-загарному действию. При диапазоне от 275 до 320 нм фиксируются слабо бактерицидный и антирахитический эффекты. А вот ультрафиолетовое излучение от 180 до 275 нм повреждает биологическую ткань. Поэтому, следует соблюдать осторожность. Длительное прямое солнечное излучение даже в безопасном спектре может привести к выраженной эритеме с отеками кожного покрова и существенному ухудшению состояния здоровья. Вплоть до повышения вероятности развития рака кожи.
Реакция на солнечный свет
В первую очередь следует упомянуть инфракрасное излучение. На организм оно оказывает тепловое воздействие, что зависит от степени поглощения лучей кожей. Для характеристики его влияния используется слово «ожог». Видимый спектр влияет на зрительный анализатор и функциональное состояние центральной нервной системы. А посредством ЦНС и на все системы и органы человека. Следует отметить, что на нас оказывает влияние не только степень освещенности, но и цветовая гамма солнечного света, то есть, весь спектр излучения. Так, от длины волны зависит цветоощущение и оказывается влияние на нашу эмоциональную деятельность , а также функционирование различных систем организма.
Красный цвет возбуждает психику, усиливает эмоции и дарит ощущение тепла. Но он быстро утомляет, способствует напряжению мускулатуры, учащению дыхания и повышению артериального давления. Оранжевый цвет вызывает ощущение благополучия и веселья, желтый поднимает настроение и стимулирует нервную систему и зрение. Зелёный успокаивает, полезен во время бессонницы, при переутомлении, повышает общий тонус организма. Фиолетовый цвет оказывает расслабляющее влияние на психику. Голубой успокаивает нервную систему и поддерживает мышцы в тонусе.
Небольшое отступление
Почему рассматривая, что такое излучение в физике, мы говорим в большей степени про ЭМИ? Дело в том, что именно его в большинстве случаев и подразумевают, когда обращаются к теме. То же корпускулярное излучение и волновое движение среды является на порядок менее масштабным и известным. Очень часто, когда говорят про виды излучений, то подразумевают исключительно те, на которые делится ЭМИ, что в корне не верно. Ведь говоря о том, что такое излучение в физике, следует уделять внимание всем аспектам. Но одновременно делается упор именно на наиболее важных моментах.
Об источниках излучения
Продолжаем рассматривать электромагнитное излучение. Мы знаем, что оно собой представляет волны, что возникают при возмущении электрического или магнитного поля . Этот процесс современной физикой трактуется с точки зрения теории корпускулярно-волнового дуализма. Так признаётся, что минимальная порция ЭМИ - это квант. Но вместе с этим считается, что у него есть и частотно-волновые свойства, от которых зависят основные характеристики. Для улучшения возможностей классификации источников выделяют разные спектры излучения частот ЭМИ. Так это:
- Жесткое излучение (ионизированное);
- Оптическое (видимое глазом);
- Тепловое (оно же инфракрасное);
- Радиочастотное.
Часть из них уже была рассмотрена. Каждый спектр излучения обладает своими уникальными характеристиками.
Природа источников
Зависимо от своего происхождения, электромагнитные волны могут возникать в двух случаях:
- Когда наблюдается возмущение искусственного происхождения.
- Регистрация излучения, идущего от естественного источника.
Что можно сказать о первых? Искусственные источники чаще всего представляют собой побочное явление, что возникает вследствие работы различных электрических приборов и механизмов. Излучение естественного происхождения генерирует магнитное поле Земли, электропроцессы в атмосфере планеты, ядерный синтез в недрах солнца. От уровня мощности источника зависит степень напряженности электромагнитного поля . Условно, излучение, что регистрируется, разделяют на низкоуровневое и высокоуровневое. В качестве первых можно привести:
- Практически все устройства, оборудованные ЭЛТ дисплеем (как, пример, компьютер).
- Различная бытовая техника , начиная от климатических систем и заканчивая утюгами;
- Инженерные системы, что обеспечивают подачу электроэнергии к разным объектам. В качестве примера можно привести кабель электропередач, розетки, электросчетчики.
Высокоуровневым электромагнитным излучением обладают:
- Линии электропередачи.
- Весь электротранспорт и его инфраструктура.
- Радио- и телевышки, а также станции мобильной и передвижной связи.
- Лифты и иное подъемное оборудование, где применяются электромеханические силовые установки.
- Приборы преобразования напряжения в сети (волны, исходящие от распределяющей подстанции или трансформатора).
Отдельно выделяют специальное оборудование, что используется в медицине и испускает жесткое излучение. В качестве примера можно привести МРТ, рентгеновские аппараты и тому подобное.
Влияние электромагнитного излучения на человека
В ходе многочисленных исследований ученые пришли к печальному выводу - длительное влияние ЭМИ способствует настоящему взрыву болезней. При этом многие нарушение происходят на генетическом уровне. Поэтому актуальной является защита от электромагнитного излучения . Это происходит из-за того, что ЭМИ обладает высоким уровнем биологической активности . При этом результат влияния зависит от:
- Характера излучения.
- Продолжительности и интенсивности влияния.
Специфические моменты влияния
Всё зависит от локализации. Поглощение излучения может быть местным или общим. В качестве примера второго случая можно привести эффект, что оказывают линии электропередачи. В качестве примера местного воздействия можно привести электромагнитные волны, что испускают электронные часы или мобильный телефон . Следует упомянуть и о термальном воздействии. За счет вибрации молекул энергия поля преобразуется в тепло. По этому принципу работают СВЧ излучатели, что используются для нагревания различных веществ . Следует отметить, что при влиянии на человека, термальный эффект всегда является негативным, и даже пагубным. Следует отметить, что мы постоянно облучаемся. На производстве, дома, перемещаясь по городу. Со временем негативный эффект только усиливается. Поэтому, все актуальнее становится защита от электромагнитного излучения.
Как же можно обезопасить себя?
Первоначально необходимо знать, с чем приходится иметь дело. В этом поможет специальный прибор для измерения излучения. Он позволит оценить ситуацию с безопасностью. На производстве для защиты используются поглощающие экраны. Но, увы, на использование в домашних условиях они не рассчитаны. В качестве начала можно соблюдать три рекомендации:
- Следует пребывать на безопасном расстоянии от устройств. Для ЛЭП, теле- и радиовышек это как минимум 25 метров. С ЭЛТ мониторами и телевизорами достаточно тридцати сантиметров. Электронные часы должны быть не ближе 5 см. А радио и сотовые телефоны не рекомендуется подносить ближе, чем на 2,5 сантиметра. Подобрать место можно с помощью специального прибора - флюксметра. Допустимая доза излучения, фиксируемая ним, не должна превышать 0,2мкТл.
- Старайтесь сократить время, когда приходится облучаться.
- Всегда следует выключать неиспользуемые электроприборы. Ведь даже будучи неактивными, они продолжают испускать ЭМИ.
О тихом убийце
И завершим статью важной, хотя и довольно слабо известной в широких кругах темой - радиационным излучением. На протяжении всей своей жизни, развития и существования, человек облучался естественным природным фоном. Естественное радиационное излучение может быть условно поделено на внешнее и внутреннее облучение. К первому относятся космическое излучение, солнечная радиация, влияние земной коры и воздуха. Даже строительные материалы , из которых создаются дома и сооружения, генерируют определённый фон.
Радиационное излучение обладает значительной проникающей силой, поэтому остановить его проблематично. Так, чтобы полностью изолировать лучи, необходимо укрыться за стеной из свинца, толщиной в 80 сантиметров. Внутреннее облучение возникает в тех случаях, когда естественные радиоактивные вещества попадают внутрь организма вместе с продуктами питания, воздухом, водой. В земных недрах можно найти радон, торон, уран, торий, рубидий, радий. Все они поглощаются растениями, могут быть в воде - и при употреблении пищевых продуктов попадают в наш организм.
Радиоактивность была открыта в 1896 г. французским ученым Антуаном Анри Беккерелем при изучении люминесценции солей урана. Оказалось, что урановые соли без внешнего воздействия (самопроизвольно) испускали излучение неизвестной природы, которое засвечивало изолированные от света фотопластинки, ионизовало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Таким же свойством обладали и вещества содержащие полоний 21084Ро и радий 226 88Ra.
Еще раньше, в 1985 г. были случайно открыты рентгеновские лучи немецким физиком Вильгельмом Рентгеном. Мария Кюри ввела в употребление слово «радиоактивность».
Радиоактивность – это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.
Различаются естественная и искусственная радиоактивности. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.
Существует несколько видов радиоактивного излучения, отличающихся по энергии и проникающей способности, которые оказывают неодинаковое воздействие на ткани живого организма.
Альфа-излучение - это поток положительно заряженных частиц, каждая из которых состоит из двух протонов и двух нейтронов. Проникающая способность этого вида излучения невелика. Оно задерживается несколькими сантиметрами воздуха, несколькими листами бумаги, обычной одеждой. Альфа-излучение может быть опасно для глаз. Оно практически не способно проникнуть через наружный слой кожи и не представляет опасности до тех пор, пока радионуклиды, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом - тогда они могут стать чрезвычайно опасными. В результате облучения относительно тяжелыми положительно заряженными альфа-частицами через определенное время могут возникнуть серьезные повреждения клеток и тканей живых организмов.
Бета-излучение - это поток движущихся с огромной скоростью отрицательно заряженных электронов, размеры и масса которых значительно меньше, чем альфа-частиц. Это излучение обладает большей проникающей способностью по сравнению с альфа-излучением. От него можно защититься тонким листом металла типа алюминия или слоем дерева толщиной 1.25 см. Если на человеке нет плотной одежды, бета-частицы могут проникнуть через кожу на глубину несколько миллиметров. Если тело не прикрыто одеждой, бета-излучение может повредить кожу, оно проходит в ткани организма на глубину 1‑2 сантиметра.
Гамма-излучение, подобно рентгеновским лучам, представляет собой электромагнитное излучение сверхвысоких энергий. Это излучение очень малых длин волн и очень высоких частот. С рентгеновскими лучами знаком каждый, кто проходил медицинское обследование. Гамма-излучение обладает высокой проникающей способностью, защититься от него можно лишь толстым слоем свинца или бетона. Рентгеновские и гамма-лучи не несут электрического заряда. Они могут повредить любые органы.
Все виды радиоактивного излучения нельзя увидеть, почувствовать или услышать. Радиация не имеет ни цвета, ни вкуса, ни запаха. Скорость распада радионуклидов практически нельзя изменить известными химическими, физическими, биологическими и другими способами. Чем больше энергии передаст излучение тканям, тем больше повреждений вызовет оно в организме. Количество переданной организму энергии называется дозой. Дозу облучения организм может получить от любого вида излучения, в том числе и радиоактивного. При этом радионуклиды могут находиться вне организма или внутри его. Количество энергии излучения, которое поглощается единицей массы облучаемого тела, называется поглощенной дозой и измеряется в системе СИ в грэях (Гр).
При одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- и гамма-излучений. Степень воздействия различных видов излучения на человека оценивают с помощью такой характеристики как эквивалентная доза. разному повреждать ткани организма. В системе СИ ее измеряют в единицах, называемых зивертами (Зв).
Радиоактивным распадом называется естественное радиоактивное превращение ядер, происходящее самопроизвольно. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием γ-фотона. Т.о. гамма-излучение - основная форма уменьшения энергии возбужденных продуктов радиоактивных превращений.
Альфа-распад. β-лучи представляют собой поток ядер гелия Не. Альфа-распад сопровождается вылетом из ядра α-частицы (Не), при этом первоначально превращается в ядро атома нового химического элемента, заряд которого меньше на 2, а массовое число – на 4 единицы.
Скорости, с которыми α-частицы (т.е. ядра Не) вылетают из распавшегося ядра, очень велики (~106 м/с).
Пролетая через вещество, α-частица постепенно теряет свою энергию, затрачивая ее на ионизацию молекул вещества, и, в конце концов, останавливается. α-частица образует на своем пути примерно 106 пар ионов на 1 см пути.
Чем больше плотность вещества, тем меньше пробег α-частиц до остановки. В воздухе при нормальном давлении пробег составляет несколько см, в воде, в тканях человека (мышцы, кровь, лимфа) 0,1-0,15 мм. α-частицы полностью задерживаются обычным листком бумаги.
α- частицы не очень опасны в случае внешнего облучения, т.к. могут задерживаться одеждой, резиной. Но α-частицы очень опасны при попадании внутрь человеческого организма, из-за большой плотности производимой имим ионизации. Повреждения, возникающие в тканях не обратимы.
Бета-распад бывает трех разновидностей. Первый – ядро, претерпевшее превращение, испускает электрон, второе – позитрон, третье – называется электронный захват (е-захват), ядро поглощает один из электронов.
Третий вид распада (электронный захват) заключается в том, что ядро поглощает один из электронов своего атома, в результате чего один из протонов превращается в нейтрон, испуская при этом нейтрино:
Скорость движения β-частиц в вакууме равна 0,3 – 0,99 скорости света. Они быстрее чем α-частицы, пролетают через встречные атомы и взаимодействуют с ними. β–частицы обладают меньшим эффектом ионизации (50-100 пар ионов на 1 см пути в воздухе) и при попадании β-частицы внутрь организма они менее опасны чем α-частицы. Однако проникающая способность β-частиц велика (от 10 см до 25 м и до 17,5 мм в биологических тканях).
Гамма-излучение – электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях, которое распространяется в вакууме с постоянной скоростью 300 000 км/с. Это излучение сопровождает, как правило, β-распад и реже – α-распад.
γ-излучение подобно рентгеновскому, но обладает значительно большей энергией (при меньшей длине волны). γ–лучи, являясь электрически нейтральными, не отклоняются в магнитном и электрическом полях. В веществе и вакууме они распространяются прямолинейно и равномерно во все стороны от источника, не вызывая прямой ионизации, при движении в среде они выбивают электроны, передавая им часть или всю свою энергию, которые производят процесс ионизации. На 1см пробега γ-лучи образуют 1-2 пары ионов. В воздухе они проходят путь от нескольких сот метров и даже километров, в бетоне – 25 см, в свинце – до 5 см, в воде – десятки метров, а живые организмы пронизывают насквозь.
γ-лучи представляют значительную опасность для живых организмов как источник внешнего облучения.
Все атомы в возбужденном состоянии способны излучать электромагнитные волны. Для этого им необходимо перейти в основное состояние, в котором их внутренняя энергия приобретает . Процесс подобного перехода сопровождается испусканием электромагнитной волны. В зависимости от длины, она обладает различными свойствами. Существует несколько видов такого излучения.
Видимый свет
Длиной волны называется кратчайшее расстояние между поверхностью равных фаз. Видимый свет - это электромагнитные волны, которые могут восприниматься человеческим глазом. Длина световых волн варьируется от 340 (фиолетовый свет) до 760 нанометров (красный свет). Лучше всего глаз человека ощущает желто-зеленую область спектра.
Инфракрасное излучение
Все, что окружает человека, включая его самого, - источники инфракрасного или теплового излучения (длина волны до 0,5 мм). Атомы излучают электромагнитные волны в этом диапазоне при хаотическом столкновении друг с другом. При каждом столкновении их кинетическая энергия переходит в тепловую. Атом возбуждается и излучает волны в инфракрасном диапазоне.
От Солнца до поверхности Земли доходит лишь небольшая часть инфракрасного излучения. До 80% поглощается молекулами воздуха и особенно углекислого газа, который вызывает парниковый эффект.
Ультрафиолетовое излучение
Длина волны ультрафиолетового излучения значительно меньше, чем инфракрасного. В спектре Солнца также имеется ультрафиолетовая составляющая, но она блокируется озоновым слоем Земли и не доходит до ее поверхности. Такое излучение очень вредно для всех живых организмов.
Длина ультрафиолетового излучения лежит в области от 10 до 740 нанометров. Та небольшая его доля, которая доходит до поверхности Земли вместе с видимым светом , вызывает у людей загар, как защитную реакцию кожи на вредное для нее воздействие.
Радиоволны
С помощью радиоволн длиной до 1,5 км можно передавать информацию. Это используется в радиоприемниках и телевидении. Такая большая длина позволяет им огибать поверхность Земли. Наиболее короткие радиоволны могут отражаться от верхних слоев атмосферы и доходить до станций, расположенных на противоположной стороне земного шара.
Гамма-лучи
Гамма-лучи относят к особо жесткому ультрафиолетовому излучению. Они образуются при взрыве атомной бомбы, а также при протекании процессов на поверхности звезд. Это излучение губительно для живых организмов, но магнитосфера Земли не пропускает их. Фотоны гамма-лучей обладают сверхвысокими энергиями.