Правила разгадывания сложных судоку. Правила игры в судоку

– это популярный вид досуга, представляющий собой головоломку с числами, которую еще называют магическим квадратом. Ее решение позволяет развивать логическое мышление, внимание, аналитический подход. Преимущества судоку заключаются не только в пользе для мозга, а также в возможности отвлечься от проблем, полностью сконцентрироваться на задании.

Правила судоку

Данная головоломка занимает мало места, в отличие от сканвордов, кроссвордов и так далее. Игровое поле, состоящее из 81 квадратов, ячейки разбиты на малые блоки, размером 3*3. Его можно легко уместить на листке бумаги. Задание выглядит в виде выборочно заполненных клеток, которые необходимо дополнить значениями и заполнить всю табличку. В судоку правила игры очень просты и позволяют исключить множественные решения. В каждой строке или столбце проставляются цифры от 1 до 9. Также значения не повторяются в рамках одного малого блока.

Судоку различаются по уровню сложности, который зависит от количества заполненных числами клеток и методов решения. Обычно различают около 5 уровней, где самый сложный способны решить только настоящие мастера.

Игра в судоку имеет свои правила и секреты. Наиболее простые головоломки можно решить за несколько минут с помощью дедукции, как есть так всегда, как минимум, одна клетка, для которой подходит только одно число. Сложные судоку можно разгадывать часами. Правильно составленная головоломка имеет только один способ решения.

Правила, как разгадывать судоку

Чтобы получить верное решение , необходимо учесть несколько простых правил:

  • Цифра может быть записана в ячейку только в том случае, если ее нет в горизонтальной и вертикальной линии , а также в малом квадрате 3*3.
  • Если она может быть записана исключительно в одну клетку.

Если оба пункта учтены, значит можно быть уверенным, что ячейка заполнена верно.

Как решать судоку простые?

Рассмотрим на конкретном примере как разгадывать судоку. Игровое поле на картинке представляет собой относительно простой вариант игры. Правила игры судоку для простых сводятся к выявлению зависимостей в горизонтальной и вертикальной плоскости и в отдельных квадратах.

Например, в центральной вертикали не хватает цифр 3, 4, 5. Четверка не может находиться в нижнем квадрате, так как в нем уже присутствует. Также можно исключить пустую центральную клетку, так как мы видим 4 в горизонтальной линии . Из этого делаем вывод, что она располагается в верхнем квадрате. Аналогично можем проставить 3 и 5 и получить следующий результат.

Проведя линии в верхнем среднем малом квадрате 3*3 можно исключить ячейки, в которых не может находиться цифра 3.

Разгадывать Продолжая подобным образом, необходимо заполнить оставшиеся ячейки. В результате получается единственно верное решение.

Такой метод некоторые называют « Последний герой » или «Одиночка». Он также используется в качестве одного из нескольких на мастерских уровнях. Среднее время, затрачиваемое на простой уровень сложности, колеблется около 20 минут.

Как решать сложные судоку?

Многие задаются вопросом, как решать судоку, есть ли стандартные методы и стратегия. Как и в любой логической головоломке есть. Самый простой из них мы рассмотрели. Чтобы перейти на более высокий уровень, необходимо иметь больший запас времени, усидчивость, терпение. Для решения головоломки придется делать предположения и, возможно, получать неверный результат, возвращающий к месту выбора. По сути судоку сложные – это как решать задачу с помощью алгоритма. Рассмотрим несколько популярных методик, применяемых профессиональными «судокуведами» на следующем примере.

В первую очередь необходимо заполнить пустые ячейки возможными вариантами , чтобы максимально облегчить решение и иметь перед глазами полную картину.

Ответ, как решить судоку сложные для каждого свой. Кому то удобнее использовать разные цвета для окрашивания ечеек или цифр, кто то предпочитает черно-белый вариант. На рисунке видно, что нет ни одной ячейки, в которой бы стояла единственная цифра, однако, это не говорит о том, что в данном задании нет одиночек. Вооружившись правилами судоку и внимательным взглядом, можно увидеть, что в верхней строке среднего малого блока стоит цифра 5, которая встречается единожды в своей линии. В связи с этим можно смело проставить ее и исключить из ячеек, окрашенных в зеленый цвет . Данное действие повлечет за собой возможность проставить цифру 3 в оранжевой клетке и смело вычеркнуть ее из соответствующик фиолетовых по вертикали и малом блоке 3*3.

Таким же образом проверяем остальные клеточки и проставляем единицы в обведенных клетках, так как они также являются единственными в своих строках.

Чтобы разобраться, как решать судоку сложные, необходимо вооружиться несколькими простыми методами.

Метод «Открытые пары»

Чтобы очистить поле дальше, необходимо найти открытые пары, которые позволяют исключить имеющиеся в них цифры из других ячеек в блоке и строках. В примере такими парочками являются 4 и 9 из третьей строки. Они наглядно показывают, как разгадывать сложные судоку. Их комбинация говорит о том, что в данных клетках могут быть проставлены исключительно 4 или 9. Этот вывод делается на основании правил судоку.

Из выделенных зеленым ячеек можно удалить значения синих и тем самым сократить количество вариантов. При этом располагающаяся в первой строке комбинация 1249 называется по аналогии «открытой четверкой». Также можно встретить «открытые тройки». Такие действия влекут за собой появление других открытых пар, например 1 и 2 в верхней строке, которые также дают возможность сузить круг комбинаций. Параллельно проставляем в обведенной ячейке первого квадрата 7, так как пятерка в данной строке в любом случае будет располагаться в нижнем блоке.

Метод «Скрытые пары/тройки/четверки»

Данный метод является противоположным к открытым комбинациям. Его суть заключается в том, что необходимо найти ячейки, в которых повторяются цифры в рамках квадрата/строки, не встречающиеся в других клеточках. Как это поможет разгадывать судоку? Прием позволяет вычеркнуть остальные цифры, так как они служат фоном и не могут быть проставлены в выбранные клетки. Данная стратегия имеет несколько других названий, например «Ячейка не резиновая», «Тайное становится явным». Сами имена объясняют суть метода и соответствие правилу, говорящему о возможности проставить единственную цифру.

Примером могут служить окрашенные в голубой цвет клетки. Цифры 4 и 7 встречаются исключительно в этих ячейках, поэтому остальные можно смело удалить.

Подобно действует система сопряжения, когда можно исключить из ячеек блока/строки/столбца значения, несколько раз встречающееся в соседнем или сопряженном.

Перекрестное исключение

Принцип того, как разгадывать судоку, заключается в умении анализировать и сопоставлять. Еще одним способом исключить варианты является наличие какой-либо цифры в двух столбцах или строчках, которые пересекаются между собой. В нашем примере подобной ситуации не встретилось, поэтому рассмотрим другой. На картинке видно, что «двойка» встречается во втором и третьем среднем блоке единожды, при комбинации чем связаны, и взаимоисключают друг друга. Исходя из этих данных, цифру 2 можно удалить из других ячеек в указанных столбцах.

Также можно применять для трех и четырех строк. Сложность метода заключается в трудностях визуализации и выявления связей.

Метод «Сокращение»

В результате каждого действия количество вариантов в ячейках сокращается и решение сводится к методу «Одиночка». Этот процесс можно назвать сокращением и выделить в отдельный метод, так как он предполагает тщательный анализ всех строк, столбцов и малых квадратов с последовательным исключением вариантов. В итоге мы приходим к единственному решению.

Цветовой метод

Данная стратегия мало отличается от описанной, и заключается в цветовой индикации ячеек или цифр. Способ помогает визуализировать весь ход решения, однако, подходит не всем. Некоторых расцветка сбивает и мешает сосредоточиться. Чтобы грамотно использовать гамму, необходимо выбрать два-три цвета и окрашивать в них одинаковые варианты в разных блоках/линиях, а также спорные ячейки.

Чтобы разобраться, как решать судоку, лучше вооружиться ручкой и бумагой. Такой подход позволит натренировать голову, в отличие от использования электронных алгоритмов с наличием подсказок. Команда BrainApps рассмотрела несколько наиболее популярных, понятных и действенных методик , однако, существует множество других алгоритмов. Например, метод «Проб и ошибок», когда выбирается пробный вариант из двух или трех возможных и проверяется вся цепочка. Недостатком данной методики является необходимость использовать компьютер, так как на листке бумаги к исходному варианту вернуться не так просто.

В предыдущих статьях мы рассматривали разные подходы в решении проблем на примерах головоломок судоку. Пришло время попытаться, в свою очередь, проиллюстрировать возможности рассмотренных подходов на достаточно сложном примере решения проблем. Итак, сегодня мы приступим к самому "невероятному" варианту судоку. Терминологию и предварительные сведения вы, уж будьте так любезны, посмотрите в , иначе вам трудно будет понять содержание данной статьи.

Вот какие сведения я нашел об этом сверхсложном варианте в интернете:

Профессор Хельсинского университета Арто Инкала (Arto Inkala) утверждает (2011г.), что он создал самый сложный в мире кроссворд судоку. Эту сложнейшую головоломку он создавал три месяца.

По его словам, созданный им кроссворд невозможно решить с помощью одной лишь только логики. Арто Инкала утверждает, что даже самые опытные игроки на решение потратят не меньше нескольких дней. Изобретение профессора получило название AI Escargot (AI – инициалы ученого, Escargot – от англ. «улитка»).

Для решения этой непростой задачи, как утверждает Арто Инкала, в голове одновременно нужно держать восемь последовательностей, в отличие от обычных головоломок, где помнить нужно об одной-двух последовательностях.

Ну, "последовательности переборов" – это все же отдает машинным вариантом решения проблем, а те, кто решал задачу Арто Инкала посредством собственных мозгов, говорят об этом по-разному. Кто-то решал ее пару месяцев, кто-то объявил о том, что на это потребовалось лишь 15 минут. Ну что ж, чемпион мира по шахматам возможно и справился бы с задачей за такое время, а экстрасенс, если таковые обитают на нашей плане, возможно и еще быстрее. А еще мог быстро решить задачу тот, кто случайно с первого разу подобрал несколько удачных цифр для заполнения пустых ячеек. Скажем, одному из тысячи решателей задачи могло бы подобным образом и повезти.

Так вот, о переборе: если удачно выбрать две три правильных цифры, то перебирать восемь последовательностей (а это десятки вариантов) может и не потребоваться. Такое у меня было соображение, когда я решил приступить к решению указанной задачи. Для начала я, будучи уже подготовленным в рамках методик предыдущих статей, решил забыть о том, что знал до сих пор. Есть такой прием, заключающийся в том, что поиск решения должен протекать свободно, без навязанных ему схем и идей. А ситуация для меня была новой, так что требовалось на нее и по-новому взглянуть. Я расположил (в Эксель) исходную таблицу (справа) и рабочую таблицу, о смысле которой я уже имел случай рассказать в первой о судоку моей статье :

Рабочая таблица, напомню, содержит предварительно допустимые сочетания цифр в исходно пустых ячейках.

После обычной почти рутинной обработки таблиц ситуации немного упростилась:

Эту ситуацию я и начал изучать. Ну а поскольку я уже подзабыл, как именно я решал эту задачу несколькими днями раньше, то начинаю осмысливать ее по новой. Прежде всего, я обратил внимание на два числа 67 в ячейках четвертого блока и совместил их с механизмом вращения (перемещения) ячеек, о котором рассказывал в предыдущей статье. Перебрав все варианты вращения трех первых столбцов таблицы, я пришел к выводу, что цифры 6 и 7 не могут находиться в одном столбце и не могут вращаться асинхронно, они, в процессе вращения, могут лишь следовать одна за другой. Также, если присмотреться, семерка с четверкой как бы передвигаются синхронно по всем трем столбцам. Поэтому я делаю правдоподобное предположение, что в нижней левой ячейке блока 4 должна разместиться цифра 7, а в правой верхней – соответственно 6.

Но этот результат я пока принимаю лишь как возможный ориентир в опробовании других вариантов. А основное внимание я обращаю на число 59 в ячейке 4-го блока. Здесь может быть либо цифра 5, либо 9. Девятка обещает уничтожить очень много лишних цифр, т.е. упростить дальнейший ход решения задачи, и я начинаю с этого варианта. Но довольно быстро захожу в "тупик", т.е. далее надо снова делать какой-то выбор и как знать, как долго мой выбор будет проверяться. Я предполагаю, что если бы девятка действительно была когда-то правильным выбором , то Инкала вряд ли бы оставил такой очевидный вариант на виду, хотя механизм его программы мог и допустить подобный ляпсус. В общем, так или иначе, я решил сначала досконально проверить вариант с цифрой 5 в ячейке с числом 59.

Но уже позже, когда решил задачу, я, так сказать для очистки совести, все же вернулся к варианту с цифрой 9, чтобы определить как долго пришлось бы его проверять. Проверять пришлось не очень долго. Когда у меня в правой верхней ячейке блока 4 оказалась цифра 6, как и полагалось по предварительно выбранному ориентиру, то в правой средней ячейке возникло число 19 (убралась 6 из 169). Я выбрал для дальнейшего опробование цифру 9 в этой ячейке и быстро пришел к противоречивому результату, т.е. выбор девятки не верен. Тогда выбираю цифру 1 и снова проверяю, что из этого выйдет.

На каком-то шаге прихожу к ситуации:

где снова приходится делать выбор – цифру 2 или 8 в верхней средней ячейке блока 4. Проверяю оба варианта (2 и 8) и в обоих случаях заканчиваю противоречивым (не отвечающим условию судоку) результатом. Так что мог бы проверить вариант с цифрой 9 в средней нижней ячейке блока 4 с самого начала и много времени на это не потребовалось бы. Но я все же, как уже говорил, остановился на цифре 5 в упомянутой ячейке. Это привело меня к следующему результату:

Расположение цифр 4 и 7 в первых трех столбцах (колонках) свидетельствует о том, что они вращаются синхронно, что собственно и предполагалось при выборе цифры 7 для нижней левой ячейки 4-го блока. При этом двойка или девятка, будь любая из них требуемой цифрой в средней левой ячейке этого блока, должны соответственно двигаться асинхронно паре 4 и 7. Предпочтение в данном случае я отдал цифре 2, так как она "обещала" устранить много лишних цифр из чисел ячеек и, соответственно, быструю проверку допустимости данного варианта. А девятка быстро заводила в тупик – требовала подбора новых цифр. Таким образом, в левой средней ячейке блока с числом 29 я проставил не мой взгляд более предпочтительную из цифр – 2. Результат вышел следующим:

Далее мне пришлось еще раз сделать так сказать полупроизвольный выбор: выбрал двойку в ячейке с числом 26 в девятом блоке. Для этого достаточно было заметить, что 5 и 2 в трех нижних строках вращаются синхронно, так как 5 не вращалась синхронно ни с 1, ни с 6. Правда, синхронно могли вращаться еще 2 и 1, но из каких-то соображений – точно не помню – я выбрал 2 вместо числа 26, возможно потому, что этот вариант, по моей оценке, быстро проверялся. Впрочем, уже оставалось немного вариантов, и можно было достаточно быстро проверить любой из них. Можно было также вместо варианта с двойкой предположить, что цифры 7 и 8 вращаются синхронно в последних трех столбцах (колонках), а отсюда следовало, что в левой верхней ячейке 9-го блока могла быть только цифра 8, что также приводит к быстрой развязке задачи.

Надо сказать, что задача Арто Инкала не допускает чисто логического решения в рамках возможностей обычного человека – так она задумана, – но все же позволяет заметить некоторые перспективные варианты перебора возможных подстановок цифр и существенно сократить этот перебор. Попробуйте начать перебор с иных, чем в данной статье, позиций, и вы, убедитесь, что почти все варианты очень быстро заводят в тупик и требуется делать все новые и новые предположения относительно дальнейшего выбора подходящих подстановок цифр. Месяца два назад я уже пытался решить эту задачу, не имея той подготовки, которую я описал в предыдущих статьях. Проверил вариантов десять ее решения и оставил дальнейшие попытки. Последний же раз, уже будучи более подготовленным, я решал эту задачу полдня или немного более, но при этом с одновременным обдумыванием выбора с моей точки зрения наиболее показательных для читателей вариантов и также с предварительным обдумыванием текста будущей статьи. А окончательный результат решения получился следующий:

Собственно, данная статья не имеет самостоятельного значения , она написана лишь для иллюстрации того, как приобретенные навыки и теоретические соображения, описанные в предыдущих статьях, позволяют решать довольно сложные проблемы . А статьи были, напомню, не о судоку, а о механизмах решения проблем на примере судоку. Предметы, как по мне, совершенно разные. Однако поскольку судоку интересует многих, то я таким образом решил привлечь внимание к более существенному вопросу, касающемуся не собственно судоку, но решения проблем.

А в остальном – желаю вам успехов в решении всех проблем.

В этой статье разберём подробно каким образом решать сложные судоку на примере диагонального судоку.

Нам выпадает условие номер 437, которое показано на рисунке 1. И сразу бросается в глаза первый квадрат, он самый насыщенный на открытые цифры. Не хватает цифр 1, 3,4,9. Но так как горизонталь а тройку уже содержит, то цифра три ставится на с1. Остальные мы точно поставить не можем. Потому рассмотрим что у нас ещё есть. К примеру вертикаль 4 и здесь цифра четыре может стоять только на b4, из за наличия четвёрки в пятом квадрате и на горизонталь с. Остальные цифры мы пока ставить не будем.

Все приёмы и методы, которые мы будем применять далее относятся как к решению простых, так и сложных судоку.

А что у нас на горизонтали b? Тут не хватает тройки и стоять она может только на b8. (Во втором квадрате она уже есть и на вертикали 9). И если внимательно рассмотреть дальше горизонталь b, то мы обнаружим, что у нас есть скрытая одиночка - цифра 9 на клетке b9. Потому как остальные кандидаты (это 1 и 5) на этой клетке стоять не могут!

Что мы можем дальше сделать? Если рассмотреть квадрат пять. Тут цифры 3 и 5 могут быть либо на d5 либо на e6. Значит для остальных цифр эти клетки не рассматриваем.Исходя из этого для единички остаётся только одно место - клетка d6.

Результат наших действий на рисунке 2. Благодаря проведённому нами анализу ряд b проставляется полностью. Единица на b5, пятёрка на b6. Что даёт нам право расставить 3 и 5 в пятом квадрате!

Продолжим анализ пятого квадрата. В нём не хватает цифры 7, её же нет на главных диагоналях, а что самое интересное на вертикали 4. Благодаря этой самой вертикали мы можем точно сказать что цифра семь в пятом квадрате может стоять либо на f4 или e4. Так как горизонтали с и d семёрку уже содержат. А на е5 она не может стоять из за вертикали 4. Дальше обратимся к главным горизонталям. И тут семёрки сразу расставляются! На i9 и на f4.

Что у нас получилось можно увидеть на рисунке 3. Дальше продожим анализ главных диагоналей. Если рассмотреть идущую с клетки а1, то в ней не хватает двойки, которая ставится только на h8. Ещё в этой диагонали не хватает 1, 8 и 9 . Единичка может стоять только на а1, ставим быстренько её! А восьмёрка на d4 стоять не может, так как она есть на горизонтали d уже. Расставляем - d4 -9, e5 -8.

А вот теперь мы можем полностью заполнить пятый и первый квадраты! Что у нас получилось смотрим на рисунке 4.

Обратите внимание на вертикаль 3. Тут нужно расставить 1, 6, 7. Единица ставится только на f3, а исходя из этого расставляются остальные - e3 -7, h3-6. Дальше на очереди у нас вертикаль 9, так как она расставляется просто сказочно. d9-2, g9-6, h9-8.

А что если нам проверить на открытые одиночки?! К примеру, цифра три смело ставится на клетки d2 и h5. Хотя дальнейший анализ одиночек ничего не даёт. Тогда обратимся к оставшейся диагонали. У ннеё не хватает 6, 2, 4. Цифра шесть может быть только на c7. Остальное уже просто заполнить.

А почему у нас вертикаль 4 не проставлена до конца? Исправляем. с4 -8.

Результат наших изысканий на рисунке5. А теперь заполним горизонталь с. с8-1, с5-9, с6-2. И это всё исходя из наличия этих цифр в других вертикалях. Основываясь на горизонтали с легко заполнить горизонталь d. d1-6, d7 -4. Дальше совсем просто заполняется третий квадрат. А вот второй квадрат пока не заполнится, хотя так же только два кандидата - шестёрка и семёрка. Но по вертикалям пять и шесть они не встречаются и потому пока отложим их.

Проанализировав все вертикали и горизонтали мы приходим к выводу, что однозначно поставить нельзя ни одной цифры. Потому переходим к рассмотрению квадратов. Обратимся к шестому квадрату. Тут не хватает 5,6,8,9. Но цифры 6 и 8 мы точно можем поставить на клетки f7 и f8. Благодаря нашему анализу горизонталь f проставляется вся! f1 -9, f2 -5. И что мы тут видим - четвёртый квадрат заполняется весь! е1- 4, е2 -2.

Что у нас получилось можно посмотреть на рисунке 6. Теперь обратимся к квадрату девять. Здесь у нас появляется одна открытая одиночка - цифра один на i7. Благодаря чему мы можем поставить единичку в седьмом квадрате на g2. Восьмёрка на i2.

Хочется сказать, что Sudoku - это действительно интересная и увлекательная задача, загадка, пазл, головоломка, цифровой кроссворд, называть ее можно как угодно. Решение которой, доставит не только настоящее удовольствие для людей думающих, но и позволит в процессе увлекательной игры развивать и тренировать логическое мышление, память, усидчивость.

Для тех, кто уже знаком с игрой в любых ее проявлениях, правила известны и понятны. А для тех, кто только думает начать, наша информация может быть полезной.

Правила игры в Судоку не сложные, они встречаются на страницах газет или их достаточно легко, можно найти в Internet.

Основные моменты укладываются в две строчки: главная задача играющего заполнить все ячейки цифрами от 1до 9. Сделать это нужно таким образом, чтобы в строке столбце и мини-квадрате 3х3 ни одна из цифр не повторялась дважды.

Сегодня мы предлагаем Вам несколько вариантов электронной игры , включающих более миллиона встроенных вариантов головоломок в каждом игровом плеере.

Для наглядности и лучшего понимания процесса решения загадки, рассмотрим один из простых вариантов, первого уровня сложности Sudoku-4tune, 6** серии.

И так, дано игровое поле, состоящее из 81-ой ячейки, которые в свою очередь составляют: 9-ть строк, 9-ть столбцов и 9-ть мини-квадратов размером 3х3 ячейки. (Рис.1.)

Пусть Вас не смущает в дальнейшем упоминание об электронной игре. Вы можете встретить игру и на страницах газет, или журналов основной принцип сохраняется.

Электронная версия игры, предоставляет большие возможности, по выбору уровня сложности головоломки, вариантов самой головоломки и их количества, по желанию игрока, в зависимости от его подготовки.

При включении электронной игрушки, в ячейках игрового поля будут даны ключевые цифры. Переносить или изменять которые нельзя. Выбрать можно вариант, более подходящий для решения, на Ваш взгляд. Рассуждая логически, отталкиваясь от приведенных цифр необходимо постепенно заполнять все игровое поле цифрами от 1 до 9.

Пример начального расположения цифр приведен на рис.2. Ключевые цифры, как правило, в электронной версии игры имеют соответствующие пометки подчеркивание или знак точки в ячейке. Для того чтобы не путать их в дальнейшем с цифрами, которые будут установлены Вами.


Посмотрев на игровое поле. Необходимо определиться с чего же нужно начинать решение. Как правило, нужно определить строку, столбец или мини квадрат, в которых имеется минимальное количество пустых ячеек. В приведенном нами варианте, сразу можно выделить две строки, верхнюю и нижнюю. В этих строках не достает всего по одной цифре. Таким образом, принимается простое решение, определив не достающие цифры -7 для первой строки и 4 для последней, вписываем их в свободные ячейки рис.3.


Получившийся результат: две заполненные строки, имеющие цифры от 1 до 9 без повторений.

Следующий ход. Столбец номер 5 (слева на право) имеет всего две свободные ячейки. После не долгих размышлений определяем недостающие цифры - 5 и 8.

Для достижения успешного результата в игре, необходимо понять, что ориентироваться необходимо по трем основным направлениям столбец, строка и мини-квадрат.

В данном примере сложно сориентироваться только по строкам, или столбцам, но если обратить внимание на мини-квадраты то становится понятно. Вписать цифру 8 во вторую (с верху) ячейку рассматриваемого столбца нельзя, иначе во втором мине-квадрате будет две восьмерки. Аналогично и с цифрой 5 для второй ячейки (снизу) и второго нижнего мини-квадрата рис.4 (не правильное расположение).


Хотя и решение кажется правильным для столбца, девять цифр, в столбце, без повторения, оно противоречит основному правил. В мини-квадратах цифры также не должны повторяться.

Соответственно для правильного решения во вторую (сверху) ячейку необходимо вписать 5, а во вторую (снизу)-8. Данное решение полностью соответствует правилам. Верный вариант см. рис 5.

Дальнейшее решение, простой с виду, задачи, требует внимательного рассмотрения игрового поля и подключения логического мышления. Можно снова воспользоваться принципом минимального количества свободных ячеек и обратить внимание на третий и на седьмой столбец (слева на право). В них не заполненными остались по три ячейки. Посчитав недостающие цифры, определяем их значения - это 2,3 и 9 для третьего столбца и 1,3 и 6 для седьмого. Оставим пока заполнение третьего столбца, поскольку с ним нет определенной ясности в отличие от седьмого. В седьмом столбце сразу можно определить расположение цифры 6 - это вторая снизу свободная ячейка. Из чего сделан такой вывод?

При рассмотрении мини-квадрат, в состав которого, входит вторая ячейка, становится понятно, что в нем уже присутствуют цифры 1и3. Из необходимой нам цифровой комбинации 1,3 и 6 другой альтернативы нет. Заполнение оставшихся двух свободных ячеек седьмого столбца, так же не вызывает затруднений. Поскольку третья строка, в своем составе уже имеет заполненную 1, в третью с верху ячейку седьмого столбца вписывается 3, а в единственную оставшуюся свободную вторую ячейку 1. Пример см. рис 6.


Оставим пока третий столбец для более четкого понимания момента. Хотя если есть желание, можно сделать для себя пометку, и внести предполагаемый вариант необходимых для установки цифр в эти ячейки, которые можно будет исправить в случае прояснения ситуации. Электронные игры Sudoku-4tune, 6** серии позволяют вписывать более одной цифры в ячейки, для памятки.

Мы же проанализировав ситуацию, обратимся к девятому (нижнему правому) мини-квадрату, в котором после нашего решения осталось три свободные ячейки.

Проанализировав ситуацию можно заметить (пример заполнения мини-квадрата), что для полного его заполнения не достает следующих цифр 2,5 и 8. Рассмотрев среднюю, свободную ячейку можно заметить, что из необходимых цифр сюда подходит только 5. Поскольку 2 присутствует в верхней ячейке столбца, а 8 в строке в состав, которой, помимо мини-квадрата входит данная ячейка. Соответственно в средней ячейке последнего мини-квадрата вписываем цифру 2, (она не входит ни в строку, ни в столбец), а в верхнюю ячейку данного квадрата вписываем 8. Таким образом, у нас полностью заполнен нижний правый (9-й) мини-квадрат цифрами от 1 до 9, при этом цифры не повторяются и в столбцах ни в строках, рис.7.


По мере заполнения свободных ячеек, их количество уменьшается, и мы постепенно приближаемся к решению нашей головоломки. Но в то же время, решение задачи может, как упрощаться, так и усложняться. И первый способ заполнения минимального количества ячеек в строках, столбцах или мини-квадратах, перестает эффективно действовать. Поскольку уменьшается количество явно определенных цифр в определенной строке, столбце или мини-квадрате. (Пример: третий, оставленный нами столбец). В этом случае необходимо воспользоваться методом поиска отдельных ячеек, установка цифр, в которые не вызывает каких либо сомнений.

В электронных играх Sudoku-4tune, 6**серии предусмотрена возможность использования подсказки. Четыре раза за игру Вы можете задействовать эту функцию и компьютер сам, установит правильную цифру в выбранной Вами ячейке. В моделях 8** серии такая функция отсутствует, и использование второго метода становится наиболее актуальным.

Рассмотрим второй метод в используемом нами примере.

Для наглядности возьмем четвертый столбец. Незаполненное количество ячеек в нем достаточно велико, шесть. Просчитав недостающие цифры, определяем их - это 1,4,6,7,8 и 9. Сократить количество вариантов, можно взяв за основу средний мини- квадрат, в котором имеется достаточно большое количество определенных цифр и всего лишь две свободные ячейки данного столбца. Сопоставив их с необходимыми нам цифрами видно, что 1,6,и 4 можно исключить. Их не должно быть в данном мини-квадрате во избежание повторений. Остается 7,8 и 9. Обратим внимание, что в строке (четвертая с верху), в состав которой входит нужная нам ячейка уже есть цифры 7 и 8 из, тех трех оставшихся которые нам нужны. Таким образом, остается единственный вариант для данной ячейки -это цифра 9, рис.8 Сомнений в правильности данного варианта решения не вызывает и тот факт, что все рассмотренные и исключенные нами цифры, были изначально даны в задании. То есть, они не подлежат какому либо изменению или переносу, подтверждая однозначность выбранной нами цифры для установки в данную конкретную ячейку.


Используя два метода одновременно в зависимости от ситуации, анализируя и логически размышляя, Вы заполните все свободные ячейки и придете к правильному решению любой головоломки Sudoku, и данной загадки в частности. Попробуйте самостоятельно завершить решение нашего примера рис.9 и сравнить его с окончательным ответом приведен на рис.10.


Возможно, Вы, для себя определите какие либо дополнительные ключевые моменты в решении головоломок, и разработаете собственную систему. Или примите наши советы, и они окажутся полезными для Вас, и позволят, присоединится к большому числу любителей и поклонников этой игры. Желаем удачи.

Итак, сегодня я научу вас решать судоку .

Для наглядности возьмем конкретный пример и рассмотрим основные правила:

Правила решения судоку:

Желтым я выделил строку и столбец. Первое правило в каждой строке и каждом столбце могут быть цифры от 1 до 9, причем они не могут повторяться. Короче говоря – 9 клеток, 9 цифр – поэтому в 1-м и том же столбце не может быть 2-х пятерок, восьмерок и т.д. Аналогично для строк.

Теперь я выделил квадраты – это второе правило . В каждом квадрате могут быть цифры от 1-го до 9 причем они не повторяются. (Так же как и в строках и столбцах). Квадраты выделены жирными линиями.

Отсюда имеем общее правило для решения судоку : ни в строках , ни в столбцах ни в квадратах цифры не должны повторяться.

Ну что ж, давайте теперь попробуем его решить:

Я выделил единицы зеленым и показал направление, куда мы смотрим. А именно – нас интересует последний верхний квадрат. Можно заметить, что во 2-м и 3-м ряду этого квадрата не могут быть единицы иначе будет повторение. Значит – единица вверху:

Легко находится и двойка:

Теперь воспользуемся найденной только что двойкой:

Надеюсь, алгоритм поиска стал понятен, поэтому с этого момента буду рисовать быстрее.

Смотрим на 1-й квадрат 3-й строки (внизу):

Т.к. у нас там осталось 2 свободных клетки, то в каждой из них может быть одна из двух цифр: (1 или 6):

Это значит, что в столбце, который я выделил не может больше быть ни 1 ни 6 – значит в верхним квадрате ставим 6.

За неимением времени на этом и остановлюсь. Очень надеюсь, что логику вы уловили. Кстати, я взял не самый простой пример, в котором скорее всего не будут сразу видны все решения однозначно, а поэтому лучше пользоваться карандашом. Мы пока не знаем насчет 1 и 6 в нижнем квадрате, поэтому их рисуем карандашом – аналогично в верхнем квадрате будут карандашом нарисованы 3 и 4.

Если ещё немного порассуждать, используя правила - избавимся от вопроса где 3, а где 4:

Да, кстати, если вам какой-то момент показался непонятным – напишите, я поясню подробнее. Удачи с разгадыванием судоку.


просмотров