Логика высказываний: теория и применение. Примеры решений задач

Логика, созданная как наука Аристотелем (384-322 г. до н.э.), на протяжении столетий использовалась для развития многих областей знания, включая теологию, философию, математику.

Она - тот фундамент, на котором построено все здание математики. По сути, логика — это наука о рассуждениях, которая позволяет определить истинность или ложность того или иного математического утверждения, исходя из совокупности первичных предположений, называемых аксиомами. Логика применяется также в информатике для построения компьютерных программ и доказательства их корректности. Понятия, методы и средства логики лежат в основе современных информационных технологий. Одна из основных целей этой работы — изложить основы математической логики, показать, как она используется в информатике, и разработать методы анализа и доказательства математических утверждений.

Логические представления - описание исследуемой сис-темы, процесса, явления в виде совокупности сложных высказываний, составленных из простых (элементарных) высказываний и логических связок между ними. Логические представления и их составляющие характеризуются опре-деленными свойствами и набором допустимых преобразо-ваний над ними (операций, правил вывода и т.п.), реализую-щих разработанные в формальной (математической) логике правильные методы рассуждений — законы логики .

Понятие высказывания

Высказывание — это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно или ложно. Иными словами, утверждение об истинности или ложности высказывания должно иметь смысл. Истинность или ложность, приписываемые некоторому утверждению, называются его значением истинности , или истинностным значением.

Например, высказывания Дважды два четыре и Город Челябинск находится в азиатской части России истинные, а высказывания Три больше пяти и Река Дон в настоящее время впадает в Каспийское море ложны, так как не соответствуют действительности. Истинные высказывания принято обозначать T ( true ) или И ( истина ), а ложные, соответственно, F ( false ) или Л ( ложь ). В информатике истинность принято обозначать 1 (двоичная единица), а ложность - 0 (двоичный ноль).

Вот примеры предложений, не являющихся высказываниями:

Кто вы? (вопрос),

Прочтите эту главу до следующего занятия (приказ или восклицание),

Это утверждение ложно (внутренне противоречивое утверждение),

Площадь отрезка меньше длины куба (нельзя сказать истинно это предложение или ложно, т.к. не имеет смысла).

Мы будем обозначать высказывания буквами латинского алфавита р , q , r , Например, р может обозначать утверждение Завтра будет дождь , а q — утверждение Квадрат целого числа есть число положительное .


Логические связки

В обыденной речи для образования сложного предложения из простых используются связки — особые части речи, соединяющие отдельные предложения. Наиболее часто употребляются связки и , или , не , если ... то , только если , и тогда и только тогда . В отличие от обыденной речи, в логике смысл таких связок должен быть определен однозначно. Истинность сложного высказывания однозначно определяется истинностью или ложностью составляющих его частей. Высказывание, не содержащее связок, называется простым . Высказывание, содержащее связки, называется сложным . Логические связки также называют логическими операциями над высказываниями.

Пусть р и q обозначают высказывания

р: Джейн водит автомобиль,

q: У Боба русые волосы.

Сложное высказывание

Джейн водит автомобиль и у Боба русые волосы состоит из двух частей, объединенных связкой и . Это высказывание может быть символически записано в виде

где символ обозначает слово и на языке символических выражений. Выражение называется конъюнкцией высказываний р и q .

Встречаются также следующие варианты записи конъюнкции:

Точно так же высказывание

Джейн водит автомобиль или у Боба русые волосы.

символически выражается как

где обозначает слово или в переводе на символический язык. Выражение называется дизъюнкцией высказываний р и q .

Опровержение, или отрицание высказывания p обозначается через

Таким образом, если р есть высказывание Джейн водит автомобиль , то - это утверждение Джейн не водит автомобиль .

Если r есть высказывание Джо нравится информатика , то Джейн не водит автомобиль и у Боба русые волосы или Джо любит информатику символически запишется как

.

И наоборот, выражение

это символическая форма записи высказывания Джейн водит автомобиль, у Боба волосы не русые и Джо нравится информатика .

Рассмотрим выражение . Если некто говорит: " Джейн водит автомобиль и у Боба русые волосы" , то мы, естественно, представляем себе Джейн за рулем автомобиля и русоволосого Боба. В любой другой ситуации (например, если Боб не русоволос или Джейн не водит автомобиль) мы скажем, что говорящий не прав.

Возможны четыре случая, которые нам необходимо рассмотреть. Высказывание р может быть истинным ( Т ) или ложным ( F ) и независимо от того, какое истинностное значение принимает р , высказывание q может также быть истинным ( Т ) или ложным ( F ). Таблица истинности перечисляет все возможные комбинации истинности и ложности сложных высказываний.

Итак, конъюнкция истинна тогда и только тогда, когда истинны оба высказывания p и q , то есть в случае 1.

Точно так же рассмотрим высказывание Джейн водит автомобиль или у Боба русые волосы , которое символически выражается как . Если некто скажет: "Джейн водит автомобиль или у Боба русые волосы", то он будет не прав только тогда, когда Джейн не сможет управлять автомобилем, а Боб не будет русоволосым. Для того чтобы все высказывание было истинным, достаточно, чтобы одна из двух составляющих его компонент была истинной. Поэтому имеет таблицу истинности

Дизъюнкция ложна только в случае 4, когда оба р и q ложны.

Таблица истинности для отрицания имеет вид

Истинностное значение всегда противоположно истинностному значению р. В таблицах истинности отрицание всегда оценивается первым, если только за знаком отрицания не следует высказывание, заключенное в скобки. Поэтому интерпретируется как , так что отрицание применяется только к р . Если мы хотим отрицать все высказывание, то это записывается как .

Символы и называют бинарными связками, так как они связывают два высказывания. Символ ~ является унарной связкой, так как применяется только к одному высказыванию.

Еще одна бинарная связка - это исключающее или, которое обозначается через . Высказывание истинно, когда истинно p или q , но не оба одновременно. Эта связка имеет таблицу истинности

Используя слово или , мы можем иметь в виду исключающее или . Например, когда мы говорим, что р — либо истина, либо ложь, то, естественно, предполагаем, что это не выполняется одновременно. В логике исключающее или используется довольно редко, и в дальнейшем мы, как правило, будем обходиться без него.

Рассмотрим высказывание

,

где скобки использованы, чтобы показать, какие именно высказывания являются компонентами каждой связки.

Таблица истинности дает возможность однозначно указать те ситуации, когда высказывание является истинным; при этом мы должны быть уверены, что учтены все случаи. Поскольку сложное высказывание содержит три основных высказывания р , q и r , то возможны восемь случаев

Случай p q r
T T T F F T
T T F F F T
T F T T T T
T F F T F T
F T T F F F
F T F F F F
F F T T T T
F F F T F F

При нахождении значений истинности для столбца мы используем столбцы для и r , а также таблицу истинности для . Таблица истинности для показывает, что высказывание истинно лишь в том случае, когда истинны оба высказывания и r . Это имеет место лишь в случаях 3 и 7.

Заметим, что при определении значений истинности для столбца играет роль только истинность высказываний p и . Таблица истинности для показывает, что единственный случай, когда высказывание, образованное с помощью связки или , ложно, — это случай, когда ложны обе части этого высказывания. Такая ситуация имеет место только в случаях 5, 6 и 8.

Другой, эквивалентный способ построения таблицы истинности состоит в том, чтобы записывать истинностные значения выражения под связкой. Снова рассмотрим выражение . Сначала мы записываем истинностные значения под переменными р , q и r . Единицы под столбцами истинностных значений указывают на то, что этим столбцам истинностные значения присваиваются в первую очередь. В общем случае число под столбцом будет показывать номер шага, на котором производятся вычисления соответствующих истинностных значений. Затем мы записываем под символом ~ истинностные значения высказывания . Далее записываем истинностные значения под символом . Наконец, записываем значения высказывания под символом .

Случай p q r p ((~ q ) r
T T T T T F T F T
T T F T T F T F F
T F T T T T F T T
T F F T T F F F F
F T T F F F T F T
F T F F F F T F F
F F T F T T F T T
F F F F F F F F F

1.1.3. Условные высказывания

Допустим, некто утверждает, что если случится одно событие, то случится и другое. Предположим, отец говорит сыну: " Если в этом семестре ты сдашь все экзамены на «отлично», я куплю тебе машину ". Заметьте, что высказывание имеет вид: если р, то q , где р — высказывание В этом семестре ты сдашь все экзамены на «отлично» , а q — высказывание Я куплю тебе машину . Сложное высказывание мы обозначим символически через . Спрашивается, при каких условиях отец говорит правду? Предположим, высказывания р и q истинны. В этом случае счастливый студент получает отличные оценки по всем предметам, и приятно удивленный отец покупает ему машину. Естественно, ни у кого не вызывает сомнения тот факт, что высказывание отца было истинным. Однако существуют еще три других случая, которые необходимо рассмотреть. Допустим, студент действительно добился отличных результатов, а отец не купил ему машину.

Самое мягкое, что можно сказать об отце в таком случае, — это то, что он солгал. Следовательно, если р истинно, а q ложно, то ложно. Допустим теперь, что студент не получил положительные оценки, но отец тем не менее купил ему машину. В этом случае отец предстает очень щедрым, но его никак нельзя назвать лжецом. Следовательно, если р ложно и q истинно, то высказывание если р, то q (т.е. ) истинно. Наконец, предположим, что студент не добился отличных результатов, и отец не купил ему машину.

Поскольку студент не выполнил свою часть соглашения, отец тоже свободен от обязательств. Таким образом, если р и q ложны, то считается истинным. Итак, единственный случай, когда отец солгал, — это когда он дал обещание и не выполнил его.

Таким образом, таблица истинности для высказывания имеет вид

Символ называется импликацией , или условной связкой .

Может показаться, что носит характер причинно-следственной связи, но это не является необходимым. Чтобы увидеть отсутствие причины и следствия в импликации, вернемся к примеру, в котором р есть высказывание Джейн управляет автомобилем , а q — утверждение У Боба русые волосы . Тогда высказывание Если Джейн управляет автомобилем, то у Боба русые волосы запишется как

если p , то q или как .

То, что Джейн управляет автомобилем, никак причинно не связано с тем, что Боб русоволосый. Однако нужно помнить, что истинность или ложность бинарного сложного высказывания зависит только от истинности составляющих его частей и не зависит от наличия или отсутствия между ними какой-либо связи.

Рассмотрим следующий пример. Требуется найти таблицу истинности для выражения

.

Используя таблицу истинности для , приведенную выше, построим сначала таблицы истинности для и , учитывая, что импликация ложна только в случае, когда .

Теперь используем таблицу для , чтобы получить для высказывания

таблицу истинности

Случай p q r ( p q ) ( q r )
T T T T T T T T T T
T T F T T T F T F F
T F T T F F F F T T
T F F T F F F F T F
F T T F T T T T T T
F T F F T T F T T F
F F T F T F T F F T
F F F F T F T F T F
*

Высказывание вида обозначается через . Символ называется эквиваленцией . Эквиваленция также иногда обозначается как (не следует путать с унарной операцией отрицания).

Относительно понятий и отношений между ними можно высказы­вать различные суждения. Языковой формой суждений являются повествовательные предложения. Предложения, используемые в математике, могут быть записаны как в словесной форме, так и в символической. Предложения могут нести верную или ложную информацию.

Высказыванием называется любое повествовательное предложение, которое может быть либо истинным, либо ложным.

Пример . Следующие предложения являются высказываниями:

1) Все студенты МГПУ – отличники (ложное высказывание),

2) На Кольском полуострове водятся крокодилы (ложное высказывание),

3) Диагонали прямоугольника равны (истинное высказывание),

4) Уравнение не имеет действительных корней (истинное высказывание),

5) Число 21 – четное (ложное высказывание).

Следующие предложения не являются высказываниями:

    Какая погода будет завтра?

    х – натуральное число,

    745 + 231 – 64.

Высказывания принято обозначать большими буквами латинского алфавита: А, В, С,…, Z .

«Истина» и «ложь» называются значениями истинности высказывания . Каждое высказывание либо истинно, либо ложно, одновременно быть и тем, и другим, оно не может.

Запись [ А ] = 1 означает, что высказывание А истинно .

А запись [ А ] = 0 означает, что высказывание А ложно .

Предложение
не является высказыванием, так как о нем невозможно сказать: истинно оно или ложно. При подстановке конкретных значений переменной х оно обращается в высказывание: истинное или ложное.

Пример . Если
, то
– ложное высказывание, а если
, то
– истинное высказывание.

Предложение
называется предикатом или высказывательной формой . Оно порождает множество высказываний одной и той же формы.

Предикатом называется предложение с одной или несколькими переменными, обращающееся в высказывание всякий раз при подстановке вместо переменных их значений.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, которые обозначаются: и т.д.

Пример . 1)
– одноместный предикат,

2) «Прямая х перпендикулярна прямой у » – двухместный предикат.

Также в предикатах переменные могут содержаться неявно. В предложениях: «Число четное», «две прямые пересекаются» переменных нет, но они подразумеваются: «Число х – четное», «две прямые х и у пересекаются».

При задании предиката указывают его область определения множество, из которого выбираются значения переменных, входящих в предикат.

Пример . Неравенство
можно рассматривать на множестве натуральных чисел , а можно считать, что значение переменной выбирается из множества действительных чисел. В первом случае областью определения неравенства
будет множество натуральных чисел, а во втором – множество действительных чисел.

Одноместным предикатом , заданным на множестве Х , называется предложение с переменной, которое обращается в высказывание при подстановке в него переменной из множества Х .

Множеством истинности одноместного предиката называется множество тех значений переменной из области ее определения, при подстановке которых предикат обращается в истинное высказывание.

Пример . Множеством истинности предиката
, заданном на множестве действительных чисел, будет промежуток
. Множество истинности предиката
, заданном на множестве целых неотрицательных чисел, состоит из одного числа 2.

Множество истинности двухместного предиката
состоит из всех таких пар
при подстановке которых в этот предикат получается истинное высказывание.

Пример . Пара
принадлежит множеству истинности предиката
, т.к.
– истинное высказывание, а пара
не принадлежит, т.к.
– ложное высказывание.

Высказывания и предикаты могут быть как простыми, так и сложными (составными). Сложные предложения образуются из простых с помощью логических связок – слов « и », « или », « если…, то », « тогда и только тогда, когда… » . С помощью частицы « не » или словосочетания « неверно, что » можно из данного предложения получить новое. Предложения, не являющиеся составными, называют элементарными .

Примеры . Составные предложения:

    Число 42 – четное и делится на 7. Образовано из двух элементарных предложений: Число 42 четное, число 42 делится на 7 и составлено с помощью логической связки « и ».

    Число х больше или равно 5. Образовано из двух элементарных предложений: Число х больше 5 и число х равно 5 и составлено с помощью логической связки « или ».

    Число 42 не делится на 5. Образовано из предложения: Число 42 делится на 5 с помощью частицы « не ».

Значение истинности элементарного высказывания определяют, исходя из его содержания с опорой на известные знания. Чтобы определить значение истинности составного высказывания, надо знать смысл логических связок, с помощью которых оно образовано из элементарных, и уметь выявлять логическую структуру высказывания.

Пример . Выявим логическую структуру предложения: «Если углы вертикальны, то они равны». Оно состоит из двух элементарных предложений: А – углы вертикальные, В – углы равны. Соединены они в одно составное предложение с помощью логической связки « если…, то… ». Данное составное предложение имеет логическую структуру (форму): « если А, то В ».

Выражение «для любого х » или «для всех х » или «для каждого х » называется квантором общности и обозначается
.


при помощи квантора общности, обозначается:
и читается: «Для любого значения х из множества Х имеет место
».

Выражение «существует х » или «для некоторых х » или «найдется такое х » называется квантором существования и обозначается
.

Высказывание, полученное из высказывания или предиката
при помощи квантора существования, обозначается:
и читается: «Для некоторых х из множества Х имеет место
» или «Существует (найдется) такое значение х из Х , что имеет место
».

Кванторы общности и существования употребляются не только в математических выражениях, но и в повседневной речи.

Пример . Следующие высказывания содержат квантор общности:

а) Все стороны квадрата равны; б) Каждое целое число является действительным; в) В любом треугольнике медианы пересекаются в одной точке; г) У всех студентов есть зачетная книжка.

Следующие высказывания содержат квантор существования:

а) Существуют числа, кратные 5; б) Найдется такое натуральное число , что
; в) В некоторых студенческих группах учатся кандидаты в мастера спорта; г) Хотя бы один угол в треугольнике острый.

Высказывание
является истинным
тождество, т.е. принимает истинные значения при подстановке в него любых значений переменной.

Пример . Высказывание
истинно.

Высказывание
ложно , если при некотором значении переменной х предикат

Пример . Высказывание
ложно, т.к. при
предикат
превращается в ложное высказывание.

Высказывание
является истинным тогда и только тогда, когда предикат
не является тождественно ложным, т.е. при некотором значении переменной х предикат

Пример . Высказывание
истинно, т.к. при
предикат
превращается в истинное высказывание.

Высказывание
ложно , если предикат
является противоречием, т.е. тождественно ложным высказыванием.

Пример . Высказывание
ложно, т.к. предикат
является тождественно ложным.

Пусть предложение А – высказывание. Если перед сказуемым данно­го предложения поставить частицу « не » либо перед всем предложением поставить слова « неверно, что », то получится новое предложение, кото­рое называется отрицанием данного и обозначается: А или (читают: « не А» или « неверно, что А »).

Отрицанием высказывания А называется высказыва­ние или А , которое ложно, когда высказывание А истинно, и истинно, когда высказывание А – ложно.

Таблица истинности отрицания:

Пример . Если высказывание А : «Вертикальные углы равны», то отрицание этого высказывания А : «Вертикальные углы не равны». Первое из этих высказываний истинное, а второе – ложное.

Для построения отрицания высказываний с кванторами надо:

    квантор общности заменить квантором существования или наоборот;

    высказывание заменить его отрицанием (поставить перед глаголом частицу « не »).

На языке математических символов это запишется так.

Свойства

Рассмотрим несколько свойств декартова произведения:

1. Если A , B - конечные множества, то A × B - конечное. И наоборот, если одно из множеств-сомножителей бесконечное, то и результат их произведения - бесконечное множество.

2. Количество элементов в декартовом произведении равно произведению чисел элементов множеств-сомножителей (в случае их конечности, разумеется): | A × B |=| A |⋅| B | .

3. A np ≠( A n ) p - в первом случае целесообразно рассмотреть результат декартова произведения как матрицу размеров 1× np , во втором же - как матрицу размеров n × p .

4. Коммутативный закон не выполняется, т.к. пары элементов результата декартова произведения упорядочены: A × B B × A .

5. Ассоциативный закон не выполняется: ( A × B C A ×( B × C ) .

6. Имеет место дистрибутивность относительно основных операциях на множествах: ( A B C =( A × C )∗( B × C ),∗∈{∩,∪,∖}

11. Понятие высказывания. Элементарные и составные высказывания.

Высказывание - это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно (И-1) или ложно (Л-0), но не то и другое одновременно.

Например, «Сегодня идет дождь», «Иванов выполнил лабораторную работу №2 по физике».

Если у нас имеется несколько исходных высказываний, то из них при помощи логических союзов или частиц мы можем образовывать новые высказывания, истинностное значение которых зависит только от истинностных значений исходных высказываний и от конкретных союзов и частиц, которые участвуют в построении нового высказывания. Слова и выражения «и», «или», «не», «если... , то», «поэтому», «тогда и только тогда» являются примерами таких союзов. Исходные высказывания называются простыми , а построенные из них с помощью тех или иных логических союзов новые высказывания - составными . Разумеется, слово «простые» никак не связано с сутью или структурой исходных высказываний, которые сами могут быть весьма сложными. В данном контексте слово «простой» является синонимом слова «исход-ный». Важно то, что значения истинности простых высказываний предполагаются известными или заданными; в любом случае они никак не обсуждаются.

Хотя высказывание типа «Сегодня не четверг» не составлено из двух различных простых высказываний, для единообразия конструкции оно также рассматривается как составное, по-скольку его истинностное значение определяется истинностным значением другого высказыва-ния «Сегодня четверг»

Пример 2. Cледующие высказывания рассматриваются как составные:

Я читаю «Московский комсомолец» и я читаю «Коммерсант».

Если он сказал это, значит, это верно.

Солнце не является звездой.

Если будет солнечно и температура превысит 25 0 , я приеду поездом или автомобилем

Простые высказывания, входящие в составные, сами по себе могут быть совершенно произвольными. В частности, они сами могут быть составными. Описываемые ниже базисные типы составных высказываний определяются независимо от образующих их простых высказываний.

12. Операции над высказываниями.

1. Операция отрицания.

Отрицанием высказывания А ( читается «не А », «неверно, что А »), которое истинно, когда А ложно и ложно, когда А – истинно.

Отрицающие друг друга высказывания А и называются противоположными.

2. Операция конъюнкции .

Конъюнкцией высказываний А и В называется высказывание, обозначаемое А В (читается « А и В »), истинные значения которого определяются в том и только том случае, когда оба высказывания А и В истинны.

Конъюнкцию высказываний называют логическим произведением и часто обозначают АВ.

Пусть дано высказывание А – «в марте температура воздуха от 0 С до + 7 С » и высказывание В – «в Витебске идет дождь». Тогда А В будет следующей: «в марте температура воздуха от 0 С до + 7 С и в Витебске идет дождь». Данная конъюнкция будет истинной, если будут высказывания А и В истинными. Если же окажется, что температура была меньше 0 С или в Витебске не было дождя, то А В будет ложной.

3 . Операция дизъюнкции .

Дизъюнкцией высказываний А и В называется высказывание А В ( А или В ), которое истинно тогда и только тогда, когда хотя бы одно из высказываний истинно и ложно – когда оба высказывания ложны.

Дизъюнкцию высказываний называют также логической суммой А+В.

Высказывание « 4<5 или 4=5 » является истинным. Так как высказывание « 4<5 » – истинное, а высказывание « 4=5 » – ложное, то А В представляет собой истинное высказывание « 4 5 ».

4 . Операция импликации .

Импликацией высказываний А и В называется высказывание А В («если А , то В », «из А следует В »), значение которого ложно тогда и только тогда, когда А истинно, а В ложно.

В импликации А В высказывание А называют основанием, или посылкой, а высказывание В следствием, или заключением.

13. Таблицы истинности высказываний.

Таблица истинности - это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и значениями функции.

Таблицы истинности применяются для:

Вычисления истинности сложных высказываний;

Установления эквивалентности высказываний;

Определения тавтологий.

Установление истинности сложных высказываний.

Пример 1. Установить истинность высказывания · С

Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.
При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

14. Равносильные формулы.

Две формулы А и В называются равносильными, если они принимают одинаковые логические значения при любом наборе значений входящих в формулу элементарных высказываний.

Равносильность обозначается знаком « ». Для преобразования формул в равносильные важную роль играют основные равносильности, выражающие одни логические операции через другие, равносильности, выражающие основные законы алгебры логики.

Для любых формул А , В , С справедливы равносильности.

I. Основные равносильности

закон идемпотентности

1-истина

0-ложь

Закон противоречия

Закон исключенного третьего

закон поглощения

формулы расщепления

закон склеивания

II. Равносильности, выражающие одни логические операции через другие.

закон де Моргана

III. Равносильности, выражающие основные законы алгебры логики.

коммутативный закон

ассоциативный закон

дистрибутивный закон

15. Формулы логики высказываний.

Виды формул классической логики высказываний – в логике высказываний различают следующие виды формул:

1. Законы (тождественно-истинные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «истинно» ;

2. Противоречия (тождественно-ложные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «ложно» ;

3. Выполнимые формулы – такие, которые принимают значение «истинно» хотя бы при одном наборе значений истинности входящих в их состав пропозициональных переменных.

Основные законы классической логики высказываний:

1. Закон тождества: ;

2. Закон противоречия: ;

3. Закон исключенного третьего: ;

4. Законы коммутативности и : , ;

5. Законы дистрибутивности относительно ,и наоборот: , ;

6. Закон удаления истинного члена конъюнкции: ;

7. Закон удаления ложного члена дизъюнкции: ;

8. Закон контрапозиции: ;

9. Законы взаимовыразимости пропозициональных связок: , , , , , .

Процедура разрешимости – метод, позволяющий для каждой формулы установить является она законом, противоречием или выполнимой формулой. Самой распространенной процедурой разрешимости является метод истинностных таблиц. Однако он не единственный. Эффективным методом разрешимости является метод нормальных форм для формул логики высказываний. Нормальной формой формулы логики высказываний является форма, не содержащая знака импликации « ». Различают конъюнктивную и дизъюнктивную нормальные формы. Конъюнктивная форма содержит только знаки конъюнкции « ». Если в формуле, приведенной к конъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является противоречием . Дизъюнктивная форма содержит только знаки дизъюнкции « ». Если в формуле, приведенной к дизъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является законом . Во всех остальных случаях формула является выполнимой формулой .

16. Предикаты и операции над ними. Кванторы.

Предложение, содержащее одну или несколько переменных и которое при конкретных значениях переменных является высказыванием, называется высказывательной формой или предикатом.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, обозначаемые соответственно: А( х ), В( х , у ), С( х , у , z ).

Если задан некоторый предикат, то с ним связаны два множества:

1. Множество (область) определения Х , состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание. При задании предиката обычно указывают его область определения.

2. Множество истинности Т, состоящее из всех тех значений переменных, при подстановке которых в предикат получается истинное высказывание.

Множество истинности предиката всегда является подмножеством его области определения, то есть .

Над предикатами можно совершать те же операции, что и над высказываниями.

1. Отрицанием предиката А( х ), заданного на множестве Х, называется предикат , истинный при тех значениях , при которых предикат А( х ) обращается в ложное высказывание, и наоборот.

Из данного определения следует, что предикаты А( х ) и В( х ) не являются отрицаниями друг друга, если найдется хотя бы одно значение , при котором предикаты А( х ) и В( х ) обращаются в высказывания с одинаковыми значениями истинности.

Множество истинности предиката является дополнением к множеству истинности предиката А( х ). Обозначим через Т А множество истинности предиката А( х ), а через Т - множество истинности предиката . Тогда .

2. Конъюнкцией предикатов А( х ) и В( х х ) В( х х Х, при которых оба предиката обращаются в истинные высказывания.

Множество истинности конъюнкции предикатов есть пересечение множеств истинности предиката А( х ) В( х ). Если обозначить множество истинности предиката А(х) через Т А, а множество истинности предиката В(х) через Т В и множество истинности предиката А(х) В(х) через , то

3. Дизъюнкцией предикатов А( х) и В( х ), заданных на множестве Х, называется предикат А( х ) В( х ), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых хотя бы один из предикатов обратился в истинное высказывание.

Множество истинности дизъюнкции предикатов есть объединение множеств истинности образующих ее предикатов, т.е. .

4. Импликацией предикатов А( х ) и В( х ), заданных на множестве Х, называется предикат А( х ) В( х ), который ложен при тех и только тех значениях переменной, при которых первый предикат обращается в истинное высказывание, а второй – в ложное.

Множество истинности импликации предикатов есть объединение множества истинности предиката В( х ) с дополнением к множеству истинности предиката А( х ), т.е.

5. Эквиваленцией предикатов А( х ) и В( х ), заданных на множестве Х, называется предикат , который обращается в истинное высказывание при всех тех и только тех значениях переменной, при которых оба предиката обращаются либо в истинные высказывания, либо в ложные высказывания.

Множество истинности эквиваленции предикатов есть пересечение множества истинности предиката с множеством истинности предиката .

Кванторные операции над предикатами

Предикат можно перевести в высказывание способом подстановки и способом «навешивание квантора».

Про числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 можно сказать: а) все данные числа простые; б) некоторые из данных чисел четные.

Так как относительно этих предложений можно сказать, что они истинны или ложны, то полученные предложения – высказывания.

Если из предложения «а» убрать слово «все», а из предложения «б» - слово «некоторые», то получим следующие предикаты: «данные числа простые», «данные числа нечетные».

Слова «все» и «некоторые» называются кванторами. Слово «квантор» латинского происхождения и означает «сколько», т. е. квантор показывает, о скольких (всех или некоторых) объектах говорится в том или ином предложении.

Различают два основных вида кванторов: квантор общности и квантор существования.

Термины «всякий», «любой», «каждый» носят название квантор всеобщности. Обозначается .

Пусть А( х ) – определенный предикат, заданный на множестве Х. Под выражением А( х ) будем понимать высказывание истинное, когда А( х ) истинно для каждого элемента из множества Х, и ложное в противном случае.R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения

18. Способы задания бинарных отношений.

Всякое подмножество декартова произведения A×B называется бинарным отношением, определенным на паре множеств A и B (по латыни «бис» обозначает «дважды»). В общем случае по аналогии с бинарными можно рассматривать и n-арные отношения как упорядоченные последовательностиn элементов, взятых по одному из n множеств.

Для обозначения бинарного отношения применяют знак R. Поскольку R- это подмножество множества A×B, то можно записать R⊆A×. Если же требуется указать, что (a, b) ∈ R, т. е. между элементами a ∈ A и b ∈ B существует отношение R, то пишут aRb.

Способы задания бинарных отношений:

1. Это использование правила, согласно которому указываются все элементы, входящие в данное отношение. Вместо правила можно привести список элементов заданного отношения путем непосредственного их перечисления;

2. Табличный, в виде графов и с помощью сечений. Основу табличного способа составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, по второй - другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

На (рисунке 1.16) изображена координатная сетка для множеств. Точкам пересечения трех вертикальных линий с шестью горизонтальными соответствуют элементы множества A×B. Кружочками на сетке отмечены элементы отношения aRb, где a ∈ A и b ∈ B, R обозначает отношение «делит».

Бинарные отношения задаются двухмерными системами координат. Очевидно, что все элементы декартова произведения трех множеств аналогично могут быть представлены в трехмерной системе координат, четырех множеств- в четырехмерной системе и т. д;

3. Способ задания отношений с помощью сечений используется реже, поэтому рассматривать его не будем.

19. Рефлексивность бинарного отношения. Пример.

В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.

Свойство рефлексивности при заданных отношениях матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при заданных отношениях графом каждый элемент имеет петлю - дугу (х, х).

Если это условие не выполнено ни для какого элемента множества, то отношение называется антирефлексивным.

Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли - нет дуг вида (х, х).

Формально антирефлексивность отношения определяется как: .

Если условие рефлексивности выполнено не для всех элементов множества, говорят, что отношение нерефлексивно.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12

Основным разделом математической логики является логика высказываний.

Высказыванием называют повествовательное предложение, которое имеет определенное значение истинности: истина или ложь. Истинному высказыванию ставится в соответствии 1, ложному – 0. Высказывания обозначаются буквами латинского алфавита.

Примеры простых высказываний:

1. А= «Число 100 больше числа 10»

2. В= «Сегодня я в школу не пойду»

Задания.

1) Объясните, почему следующие предложения не являются высказываниями:

1. Какого цвета этот дом?

2. Число Х не превосходит единицы.

4. Посмотрите в окно.

5. Пейте томатный сок!

6. Эта тема скучна.

7. Валерий Леонтьев – популярный певец.

2) Приведите примеры простых высказываний, определите их истинность или ложность.

Используя простые высказывания, можно образовать сложные , или составные, высказывания, в которые простые входят в качестве элементарных составляющих. Примеры сложных высказываний:

1. А= «Число 100 больше 10, но меньше 1000»

2. В= «Если завтра будет дождь, то в поход мы не пойдем»

Какие простые высказывания входят в сложные А и В?

В образовании сложных высказываний используются слова: и, или, тогда и только тогда, когда (в том и только в том случае), если..., то..., нет. Их называют логическими связками или логическими операциями.

Основная задача логики высказываний заключается в том, чтобы на основании истинности или ложности простых высказываний определить истинность или ложность сложных высказываний.

Логические операции

1) Инверсия (операция отрицания или логическое отрицание, НЕ). Обозначается ù, ` .

Если А - истинное высказывание, то `А – ложное высказывание, и наоборот .


_ А

2) Конъюнкция (логическое умножение, соответствует союзу И). Обозначается Ù, × , & , математическим знаком умножения или опуская его.

Например: С = «Солнце светит и нет дождя».

Обозначим А = «Солнце светит», В= «нет дождя».

Тогда высказывание С можно записать: А Ù В (или А&В, А×В, АВ).

Таблица истинности:
А В А&В (АВ)

3) Дизъюнкция (логическое сложение, ИЛИ), имеет два различных значения. Следует различать исключающее «или» и неисключающее «или».

В русском языке союз «или» используется в двояком смысле.

Например, в предложении « Обычно в 8 вечера я смотрю теле­визор или пью чай» союз «или» взят в неисключающем (объедини­тельном) смысле, так как вы можете только смотреть телевизор или только пить чай, но вы можете также пить чай и смотреть телевизор одновременно, потому что мама у вас нестрогая. Такая операция называется нестрогой дизъюнкцией или просто дизъюнкцией. (Если бы мама была строгая, то она разрешила бы или только смотреть телевизор, или только пить чай, но не совмещать прием пищи с просмотром телепередач.)

В высказывании « Данный глагол I или II спряжения» союз «или» используется в исключающем (разделительном) смысле.Такаяоперация называется строгой дизъюнкцией.

Примеры строгих и нестрогих дизъюнкций:

а) Операция дизъюнкция (логическое сложение, нестрогая дизъюнкция), соответствует неисключающему ИЛИ, обозначается Ú , +.

Строгая дизъюнкция истинна только тогда, когда одно высказывание истинно, а другое ложно.


4) Импликация . Выражается словосочетанием «если … то». Импликация А ® В истинна всегда, за исключением случая, когда А истинно, а В ложно . Таблица истинности импликации имеет следующий вид:

А В А®В 1

( Из опыта : Операция импликации (логического следования) является наиболее сложной для учащихся, так как она самая «формально опреде­ленная» и не подкрепляется «здравым смыслом». В процессе ее изучения имеет смысл поговорить о формальном исполнителе и его отличии от неформального .)

Примеры импликаций:

1) Если клятва дана, то она должна выполняться.

2) Если число делится на 9, то оно делится на 3.

В логике допустимо рассматривать и бессмысленные с житейской точки зрения высказывания.

Приведем примеры суждений, которые не только правомерно рассматривать в логике, но и которые к тому же имеют значение «истина»;

1) Если коровы летают, то 2 + 2 = 5.

2) Если я - Наполеон, то у кошки четыре ноги.

Объяснить операцию импликацию можно, например, следующим образом.

Пусть даны высказывания:

А = На улице дождь. В = Асфальт мокрый .

А®В = «Если на улице дождь, то асфальт мокрый.»

Тогда, если идет дождь (А = 1) и асфальт мокрый (В = 1), то это правильно. Но если вам скажут, что на улице идет дождь (А = 1), а асфальт остается сухим (В = 0), то вы посчитаете это ложью. А вот когда дождя на улице нет (А = 0), то асфальт может быть и сухим, и мокрым (например, только что проехала поливальная машина).

5) Операция эквиваленция обозначается знаками «, =, Û. Сложное высказывание А«В
(А эквивалентно В) истинно тогда и только тогда, когда и А и В истинны, или когда и А и В – ложны.

Сводная таблица логических операций

(заполняется учащимися самостоятельно):

Ниже приведена таблица логических операций и их перевода на естественный язык.

Операция Обозначение Перевод на естественный язык
Инверсия (отрицание) Ā, ùА, не А не А; неверно, что А
Конъюнкция (логическое произведение) АВ, АÙВ, А и В, А and В, А´В, А&В, А×В и А, и В; как А, так и В; А вместе с В; А несмотря на В; А, в то время как В
Дизъюнкция простая (логическая сумма, не исключающее ИЛИ) А+В, А Ú В, А или В, А or В А или В
Дизъюнкция строгая (исключающее ИЛИ) А"В, А Å В или А или В либо А, либо В
Импликация А®В, АÞВ Если А, то В; В если А; В необходимо для А; А достаточно для В; А только тогда, когда В; В тогда, когда А; все А есть В
Эквиваленция А«В, АÛВ А равно В; А эквивалентно В; А необходимо и достаточно для В; А тогда и только тогда, когда В

Приоритет выполнения операций : при отсутствии скобок первой всегда выполняется операция отрицания, затем конъюнкция, дизъюнкция, импликация и в последнюю очередь эквиваленция.

Упражнения.

1. Даны два высказывания:

А={Число 5 - простое},

В={Число 4 - нечетное},

Очевидно, что А=1, В=0.

В чем заключаются высказывания:

а) Ā, б) `В, в) АВ, г) А+В д) А®В

Какие из высказываний а) – г) истинны? Составьте таблицы истинности.

2. Найдите значения выражений:


а) (1 + 1) Ú (1 + 0);

б) ((1 + 0) + 1) + 1;

в) (А + 1) + (В + 0);

г) (0 Ù 1) Ù 1;

д) 1 Ù (1 Ù 1) Ù 1;

е) ((1 Ú 0) Ù (1 Ù 1) Ù (0 Ú 1);

ж) ((1 Ù А) Ú (В Ù 0)) Ú 1;

з) ((1 Ù 1) Ú 0) Ù (0 Ú 1);

и) ((0 Ù 0) Ú 0) Ù (1 Ú 1);

к) ((0 × 1) + (1 + 1)) × 1.


3. Переведите на язык алгебры логики высказывания:

1) «Я поеду в Москву, и если встречу там друзей, то мы интересно проведем там время»

2) «Если я поеду в Москву и встречу там друзей, то мы интересно проведем там время»

3) «Неверно, что если дует ветер, то солнце светит только тогда, когда нет дождя».

4) «Если будет солнечная погода, то ребята пойдут в лес, а если будет пасмурно, то пойдут в кино»

5) «Неверно, что если погода пасмурная, то дождь тогда и только тогда, когда нет ветра».

6) «Если урок по информатике будет интересным, то ни Миша, ни Света, ни Вика не будут смотреть в окно»

Решение:

1) М × (В ® И); 2) (М × В) ® И; 3) В ® С ®`Д;

4) (С ® Л) × (`С ® К); 5) П ® (Д « `В); 6) И ® `М ×`С ×`В

1) «Вам никогда не удастся создать мудрецов, если будете убивать в детях шалунов» (Ж.Руссо).

2) «Чтение художественной литературы – неоценимый источник познания жизни и законов ее борьбы».

4) «Мудрость – это способность предвидеть отдаленные последствия совершаемых действий, готовность пожертвовать сиюминутной выгодой ради больших благ в будущем и умение управлять тем, что управляемо, не сокрушаясь из-за того, что неуправляемо» (Ракофф).

6) «Верность друга нужна и в счастье, в беде же она совершенно необходима».

4. Являются ли высказываниями русские народные пословицы и поговорки? Приведите примеры. ( Из опыта : Объявляется конкурс «Знаешь ли ты пословицы, которые являются высказываниями». Победителей обычно несколько, поощряются оценками и поощрительными аплодисментами одноклассников )

Самостоятельная работа №1.

(примерные задания в приложении 1, некоторые решения и ответы в приложении 2)

1) Решить логическую задачу табличным способом;

2) Записать сложные высказывания на языке алгебры логики;

3) Найти значение выражения.

Таблицы истинности

Итак, сложное высказывание принимает значение 1 или 0 в зависимости от значений простых высказываний, входящих в него.

Таблицу, показывающую, какие значения принимает сложное высказывания при всех сочетаниях (наборах) значений входящих в него простых высказываний, называют таблицей истинности сложного высказывания .


В `В А`В А`В А`В ® А

Из полученной таблицы видно, что значения формулы А`В ® А совпадают со значениями формулы А. Такие формулы называются равносильными . Для обозначения равносильности используют обычно знак равенства.

Для составления таблицы истинности сложного высказывания, в которое входит более двух переменных, можно воспользоваться следующим алгоритмом:

2. Определить число строк в таблице m= 2 n .

3. Определить количество столбцов в таблице: число переменных плюс число операций.

4. Выписать наборы входных переменных с учетом того, что они представляют собой натуральный ряд n–разрядных двоичных чисел от 0 до 2 n -1.

5. Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии приоритета операций.

Пример. Построить таблицу истинности для формулы F=A ® B&C

0

Упражнения.

1. Проверьте равносильность следующих формул с помощью таблиц истинности:


1) А (А + В) = А

2) А + АВ = А

3) А ® В = Ā + В


4) А ® В = `А ®`В

5) `А +`В = А В

6) А + В = Ā ×`В


2. Определите значение формулы: F= ((С+В)®В) × (АВ) ®В.

Пример 1. Установить истинность высказывания · С Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С.

В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой. При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С
0 0 0 1 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 1 1
1 0 0 1 1 0 0
1 0 1 1 1 0 0
1 1 0 0 1 0 0
1 1 1 0 1 0 0

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 1. Установление истинности сложных высказываний.:

  1. 29. Проблема разрешимости в алгебре высказываний(АВ). Алгоритмы проверки формул алгебры высказываний на тождественную истинность: составление таблицы истинности, выполнение равносильных преобразований (анализ КНФ), алгоритм редукции, алгоритм Квайна. Преимущества и недостатки указанных методов.
  2. Вопрос 6. Исчисление высказываний. Аксиомы. Правило вывода. Вывод. Тождественная истинность выводимых формул (доказать). Непротиворечивость исчисления высказываний. Теорема о полноте исчисления высказываний. Проблема разрешимости. Исчисление высказываний. Проблема разрешимости
просмотров
просмотров