Как представлять в уме. Как быстро умножать двузначные числа в уме
Как быстро умножать большие числа, как овладеть такими полезными навыками? У большинства вызывает затруднения устное перемножение двузначных чисел на однозначные. А о сложных арифметических расчетах и говорить нечего. Но при желании способности, заложенные в каждом человеке, можно развить. Регулярные тренировки, немного усилий и применение, разработанных учеными, эффективных методик позволят достичь потрясающих результатов.
Выбираем традиционные методы
Проверенные десятилетиями способы перемножения двузначных чисел не теряют своей актуальности. Простейшие приемы помогают миллионам обычных школьников, учащихся специализированных ВУЗов и лицеев, а также людям, занимающимся саморазвитием, усовершенствовать вычислительное мастерство.
Умножение с помощью разложения чисел
Наиболее легким способом, как быстро научиться умножать большие числа в уме, является перемножение десятков и единиц. Сначала умножаются десятки двух чисел, затем поочередно единицы и десятки. Четыре полученных числа суммируются. Для использования этого метода важно уметь запоминать результаты перемножения и складывать их в уме.
Например, для умножения 38 на 57 необходимо:
- разложить число на (30+8)*(50+7) ;
- 30*50 = 1500 – запомнить результат;
- 30*7 + 50*8 = 210 + 400 = 610 – запомнить;
- (1500 + 610) + 8*7 = 2110 + 56 = 2166
Умножение в столбик в уме
Визуальное представление привычного перемножения в столбик многие используют при расчетах. Этот метод подойдет тем, кто умеет надолго запоминать вспомогательные числа и выполнять с ними арифметические действия . Но процесс значительно упрощается, если вы научились, как быстро умножать двузначные числа на однозначные. Для перемножения, например, 47*81 нужно:
- 47*1 = 47 – запомнить;
- 47*8 = 376 – запоминаем;
- 376*10 + 47 = 3807.
Приведенные выше способы умножения универсальны. Но знание более эффективных алгоритмов для некоторых чисел намного сократит количество расчетов.
Умножение на 11
Это, пожалуй, самый простой способ, который используется для умножения любых двузначных чисел на 11.
Достаточно между цифрами множителя вставить их сумму:
13*11 = 1(1+3)3 = 143
Если в скобках получается число больше 10, то к первой цифре добавляется единица, а из суммы в скобках вычитается 10.
28*11 = 2 (2+8) 8 = 308
Умножение
больших чисел
Очень удобно перемножать числа, близкие к 100 разложением их на составляющие. Например, необходимо умножить 87 на 91.
-
Каждое число необходимо представить как разницу 100 и еще одного числа:
(100 - 13)*(100 - 9)
Ответ будет состоять из четырех цифр, две первые из которых – разница первого множителя и вычитаемого из второй скобки или наоборот – разница второго множителя и вычитаемого из первой скобки.
87 – 9 = 78
91 – 13 = 78 - Вторые две цифры ответа - результат перемножения вычитаемых из двух скобок. 13*9 = 144
- В результате получаются числа 78 и 144. Если при записывании окончательного результата получается число из 5 цифр вторую и третью цифру суммируем. Результат: 87*91 = 7944 .
Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.
Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.
После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).
Предупреждаем! Если вы обычный человек , а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.
Гаусс и устный счет
Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.
По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.
В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.
Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.
Сложение чисел в уме
Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10 . В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.
Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10 ». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10 , а потом прибавляем к 10 оставшуюся до второго слагаемого разность.
Например, сложим числа 8 и 6 . Чтобы из 8 получить 10 , не хватает 2 . Затем к 10 останется прибавить 4=6-2 . В итоге получаем: 8+6=(8+2)+4=10+4=14
Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.
Пусть нам нужно сложить два числа: 356 и 728 . Число 356 можно представить как 300+50+6 . Аналогично, 728 будет иметь вид 700+20+8 . Теперь складываем:
356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084
Вычитание чисел в уме
Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.
Например, сколько будет 528-321 ? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1 .
Теперь считаем: 528-300-20-1=228-20-1=208-1=207
Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.
Умножение чисел в уме
Умножение – это многократное повторение числа. Если нужно умножить 8 на 4 , это значит, что число 8 нужно повторить 4 раза.
8*4=8+8+8+8=32
Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения . Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.
Умножение многозначных чисел на однозначные
Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6 . Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.
528=500+20+8
528*6=500*6+20*6+8*6=3000+120+48=3168
Кстати! Для наших читателей сейчас действует скидка 10% на
Умножение двузначных чисел
Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.
Перемножим 28 и 32 . Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2
28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896
Еще один пример. Умножим 79 на 57 . Это значит, что на нужно взять число « 79 » 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50 , а потом – 79 на 7 .
- 79*50=(70+9)*50=3500+450=3950
- 79*7=(70+9)*7=490+63=553
- 3950+553=4503
Умножение на 11
Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.
Чтобы умножить двузначное число на 11 , две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число - результат умножения исходного числа на 11 .
Проверим и умножим 54 на 11 .
- 5+4=9
- 54*11=594
Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами - эта хитрость работает!
Возведение в квадрат
С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5 .
Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n , то следующей за ней по иерархии цифрой будет n+1 . Результат заканчивается на квадрат последней цифры, то есть квадрат 5 .
Проверим! Возведем в квадрат число 75 .
- 7*8=56
- 5*5=25
- 75*75=5625
Деление чисел в уме
Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.
Деление на однозначное число
При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.
Например, есть число 6144 , которое нужно разделить на 8 . Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600 . Представим пример в виде:
6144:8=(5600+544):8=700+544:8
544:8=(480+64):8=60+64:8
Осталось разделить 64 на 8 и получить результат, сложив все результаты деления
64:8=8
6144:8=700+60+8=768
Деление на двузначное число
При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.
При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.
Например, умножим 1325 на 656 . По правилу, последняя цифра в получившемся числе будет 0 , так как 5*6=30 . Действительно, 1325*656=869200 .
Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.
Сколько будет 4424:56 ?
Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424 . Интуитивно попробуем число 80.
56*80=4480
Значит, искомое число меньше 80 и явно больше 70 . Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4 . Согласно таблице умножения, нам подходят результаты 4 и 9 . Логично предположить, что результатом деления может быть либо число 74 , либо 79 . Проверяем:
79*56=4424
Готово, решение найдено! Если бы не подошло число 79 , второй вариант обязательно оказался бы верным.
В заключение приведем несколько полезных советов , которые помогут быстро научиться устному счету :
- Не забывайте тренироваться каждый день;
- не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
- скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
- почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.
Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!
Раннее дошкольное развитие ребенка сегодня, как говорится, в тренде. Иногда оно приобретает такие масштабы, что превращается в настоящую гонку за новыми успехами в различных сферах знаний. Среди них есть совершенно бесполезные и по-настоящему ценные знания и навыки. Устный счет относится к обязательным направлениям в обучении дошкольников. И родителям необходимо найти самый эффективный способ научить ребенка считать в уме, чтобы в начальной школе он с легкостью приступил к изучению математики.
Выбираем лучший метод быстрого счета в уме для детей. Польза самых популярных методик
Родители будущих школьников тоже были детьми. Все они когда-то учились считать традиционным путем, то есть изучали состав чисел, таблицу умножения. Единственный для них метод быстрого счета в уме – это решение примеров в столбик или складывание (отнимание) чисел по частям. Сегодня в обучении малышей используют различные авторские методики. И каждая из них обещает лучший результат. Так ли они хороши? Давайте вместе разбираться.
Метод счета в уме Леушиной (традиционная программа)
Это программа советской школы, которая до сих пор используется в большинстве детских садов России и других стран на постсоветском пространстве. Суть метода: обучение на предметах (палочках, пальцах и пр.). Малыши учатся поэтапно. Сначала простой счет, потом сравнение (изучение понятий «больше», «равно», «меньше»), потом счет наоборот, вычислительные действия.
Польза метода А. М. Леушиной:
- развитие речи (малыш вслух комментирует свои действия);
- развитие моторики при работе со счетным материалом;
- возможность учиться вне школьных (детсадовских) стен: на прогулке, дома, в дороге.
Недостатки:
- метод не развивает скорость мышления;
- дети усваивают науку с разной скоростью , поэтому отстающим трудно, а тем, кто легко и быстро проходит каждый этап обучения, становится неинтересно.
Способ быстрого счета в уме Гленна Домана
Гленн Доман создал целую систему обучения малышей при помощи карточек. Ее используют в занятиях многие современные развивающие курсы для детей. Но с таким же успехом учить малышей счету могут и родители.
Для изучения устного счета используются карточки, на которых изображено разное количество точек. На начальном этапе родители (педагог) показывают малышу карточки, на которых не более 5 точек. Потом на демонстрационных карточках точек становится все больше. Таким способом можно научить ребенка считать до 100, не привязываясь к изображению цифр.
Плюсы метода:
- не нужно проговаривать свои действия;
- дети учатся считать посредством визуального восприятия;
- метод дает малышу возможность оперировать большими числами.
Минусы:
- пассивное участие малыша в учебном процессе;
- не подходит для подвижных, неусидчивых детей;
- для лучшего усвоения материала требуется многократное повторение тренировок в течение дня (не все родители могут себе позволить уделять столько времени и сил занятиям);
- расходные материалы дорогостоящие, а самостоятельное изготовление карточек слишком трудоемко;
- метод основан на использовании памяти, при этом не развивается логика, а полученные знания не закрепляются практической работой.
Уроки ментальной арифметики – актуальный метод быстрого счета в уме для детей
В России ему дала жизнь школа ментальной арифметики Соробан ®. Философия, фундамент обучения – занятия со счетным инструментом под названием абакус. Родина счетной доски – Япония, но прототипом для создания абакуса послужили древние китайские счеты. Получается, что уже три тысячелетия назад люди практиковались в ментальной математике, но не знали о ее пользе для интеллекта.
Какие преимущества дает метод?
- Скоростной устный счет – навык, которого не дает больше ни один метод быстрого счета в уме.
- Развитие подвижности пальцев рук, что влияет на развитие речи.
- Тренировка навыка концентрации, феноменальной способности к запоминанию.
- Развитие в одно время образного мышления (визуализация счетов) и логики.
- Применение полученных навыков для решения задач разной сложности. Развитие самостоятельности в принятии решений.
- Доступность метода не только для дошколят, но и для младших школьников. Студентами школы устного счета Соробан ® могут быть дети 5 -11 лет (другие методы предназначены только для дошкольников).
- Активное участие ребенка в обучении.
- Индивидуальный подход – дает возможность заинтересовать в обучении каждого ребенка, не мешает малышам учиться в комфортном для них темпе.
- Ощутимые результаты, которые помогают мотивировать учеников на дальнейшие успехи.
Ментальная арифметика – особенный метод быстрого счета в уме еще и потому, что в перспективе она влияет положительно на развитие ребенка и в других направлениях. Ученик начинает хорошо читать и усваивать материал, лучше справляется с серьезными нагрузками, развивается в творчестве и разных сферах применения интеллекта.
Соробан — школа в России. Видео-обзор нового приложения
Почему я называю свой способ легким и даже удивительно легким? Да просто потому, что более простого и надежного способа обучения малышей счету я пока не встречал. Вы сами в этом скоро убедитесь, если воспользуетесь им для обучения своего ребенка. Для ребенка это будет просто игрой, а все, что потребуется от родителей — это уделять этой игре по несколько минут в день, и если будете придерживаться моих рекомендаций, то раньше или позже ваш ребенок обязательно начнет считать наперегонки с вами. Но возможно ли такое, если ребенку всего три или четыре года? Оказывается, вполне возможно. Во всяком случае, я успешно делаю это более десяти лет.
Весь процесс обучения я излагаю далее очень подробно, с детальным описанием каждой обучающей игры, для того чтобы его смогла повторить со своим ребенком любая мама. А, кроме того, в Интернете на моем сайте "Семь ступенек к книжке" я разместил видеозаписи фрагментов моих занятий с детьми, чтобы сделать эти уроки еще более доступными для воспроизведения.
Сначала несколько вступительных слов.
Первый вопрос, который возникает у некоторых родителей: а стоит ли начинать учить ребенка счету до школы?
Я считаю, что обучать ребенка нужно тогда, когда он проявляет интерес к предмету обучения, а не после того, как этот интерес у него угас. А интерес к счету и подсчитыванию проявляется у детей рано, его надо лишь слегка подпитывать и незаметно день ото дня усложнять игры. Если же ваш ребенок почему-то безразличен к пересчитыванию предметов, не говорите себе: "У него нет склонности к математике, я тоже в школе по математике отставала". Постарайтесь пробудить в нем этот интерес. Просто включите в его развивающие игры то, что вы до сих пор упускали: пересчитывание игрушек, пуговичек на рубашке, ступенек при ходьбе и т.п.
Второй вопрос: каким способом лучше обучать ребенка?
Ответ на этот вопрос вы получите, прочитав здесь полное изложение моей методики обучения устному счету.
А пока хочу предостеречь вас от применения некоторых способов обучения, не приносящих ребенку пользу.
"Чтобы к 2-м прибавить 3, нужно сначала к 2-м прибавить 1, получится 3, потом к 3-м прибавить еще 1, получится 4, и, наконец, к 4-м прибавить еще 1, в результате будет 5"; "- Чтобы от 5-ти отнять 3, нужно сначала отнять 1, останется 4, потом от 4-х отнять еще 1, останется 3, и, наконец, от 3-х отнять еще 1, в результате останется 2".
Этот, к сожалению, распространенный способ вырабатывает и закрепляет привычку к медленному подсчитыванию и не стимулирует умственное развитие ребенка. Ведь считать — значит складывать и отнимать сразу целыми числовыми группами, а не добавлять и убавлять по единичке, да еще и с помощью пересчитывания пальчиков или палочек. Почему же этот не полезный для ребенка способ так распространен? Думаю, потому что так проще учителю. Надеюсь, что некоторые учителя, ознакомившись с моей методикой, откажутся от него.
Не начинайте учить ребенка считать с помощью палочек или пальцев и следите, чтобы он не начал пользоваться ими позже по совету старшей сестрички или братика. Научить считать на пальцах легко, а отучить трудно. Пока ребенок считает по пальцам, механизм памяти не задействован, в памяти не откладываются результаты сложения и вычитания целыми числовыми группами.
И, наконец, ни в коем случае не используйте появившийся в последние годы способ счета "по линеечке":
"Чтобы к 2-м прибавить 3, нужно взять линеечку, найти на ней цифру 2, отсчитать от нее вправо 3 раза по сантиметру и прочитать на линеечке результат 5";
"Чтобы от 5-ти отнять 3, нужно взять линеечку, найти на ней цифру 5, отсчитать от нее влево 3 раза по сантиметру и прочитать на линеечке результат 2".
Этот способ счета с использованием такого примитивного "калькулятора", как линеечка, как будто нарочно придуман для того, чтобы отучить ребенка думать и запоминать. Чем так учить считать, лучше вовсе не учить, а сразу показать, как пользоваться калькулятором. Ведь этот способ, точно так же, как и калькулятор, исключает тренировку памяти и тормозит умственное развитие малыша.
На первом этапе обучения устному счету необходимо научить ребенка считать в пределах десяти. Нужно помочь ему прочно запомнить результаты всех вариантов сложения и вычитания чисел в пределах десяти так, как помним их мы, взрослые.
На втором этапе обучения дошкольники осваивают основные методы сложения и вычитания в уме двузначных чисел. Главным теперь уже является не автоматическое извлечение из памяти готовых решений, а понимание и запоминание способов сложения и вычитания в последующих десятках.
Как на первом, так и на втором этапе обучение устному счету происходит с применением элементов игры и состязательности. С помощью обучающих игр, выстроенных в определенной последовательности, достигается не формальное заучивание, а осознанное запоминание с использованием зрительной и тактильной памяти ребенка с последующим закреплением в памяти каждого усвоенного шага.
Почему я учу именно устному счету? Потому что только устный счет развивает память, интеллект ребенка и то, что мы называем смекалкой. А именно это и потребуется ему в последующей взрослой жизни. А писание "примеров" с длительным обдумыванием и вычислением ответа на пальчиках дошкольнику ничего, кроме вреда, не приносит, т.к. отучает думать быстро. Примеры он будет решать позже, в школе, отрабатывая аккуратность оформления. А сообразительность необходимо развить в раннем возрасте , чему способствует именно устный счет.
Еще до того как начать обучение ребенка сложению и вычитанию, родители должны научить его пересчитывать предметы на картинках и в натуре, считать ступеньки на лестнице, шаги на прогулке. К началу обучения устному счету ребенок должен уметь сосчитать хотя бы пять игрушек, рыбок, птичек, или божьих коровок и при этом освоить понятия "больше" и "меньше". Но все эти разнообразные предметы и существа не следует использовать в дальнейшем для обучения сложению и вычитанию. Обучение устному счету нужно начинать со сложения и вычитания одних и тех же однородных предметов, образующих определенную конфигурацию для каждого их числа. Это позволит задействовать зрительную и тактильную память ребенка при запоминании результатов сложения и вычитания целыми числовыми группами (см. видеофайл 056). В качестве пособия для обучения устному счету я применил набор небольших счетных кубиков в коробочке для счета ( подробное описание — далее). А к рыбкам, птичкам, куклам, божьим коровкам и прочим предметам и существам дети вернутся позже, при решении арифметических задач . Но к этому времени сложение и вычитание любых чисел в уме уже не будет представлять для них сложности.
Для удобства изложения я разбил первый этап обучения (счет в пределах первого десятка) на 40 уроков, а второй этап обучения (счет в последующих десятках) еще на 10-15 уроков. Пусть вас не пугает большое количество уроков. Разбивка всего курса обучения на уроки приблизительна, с подготовленными детьми я прохожу иногда по 2-3 урока за одно занятие, и вполне возможно, что вашему малышу так много занятий не потребуется. Кроме того, уроками эти занятия можно назвать лишь условно, т.к. продолжительность каждого составляет лишь 10-20 минут. Их можно также совмещать с уроками чтения. Заниматься желательно два раза в неделю, а выполнению домашних заданий достаточно уделять по 5-7 минут в остальные дни. Самый первый урок нужен не каждому ребенку, он разработан лишь для детей, которые еще не знают цифры 1 и, глядя на два предмета, не могут сказать, сколько их, не подсчитав предварительно пальчиком. Их обучение необходимо начинать практически "с чистого листа ". Более подготовленные дети могут начинать сразу со второго, а некоторые — с третьего или четвертого урока.
Я провожу занятия одновременно с тремя детьми, не более, чтобы удерживать внимание каждого из них и не давать им скучать. Когда уровень подготовки детей несколько отличается, приходится заниматься с ними поочередно разными задачками, все время переключаясь с одного ребенка на другого. На начальных уроках присутствие родителей желательно для того, чтобы они поняли суть методики и правильно выполняли несложные и коротенькие ежедневные домашние задания со своими детьми. Но разместить родителей надо так, чтобы дети забыли об их присутствии. Родители не должны вмешиваться и одергивать своих детей, даже если те шалят или отвлекаются.
Занятия с детьми устным счетом в небольшой группе можно начинать, приблизительно, с трехлетнего возраста, если они уже умеют подсчитывать пальчиком предметы, хотя бы до пяти. А с собственным ребенком родители вполне могут заниматься начальными уроками по этой методике и с двух лет.
Начальные уроки первого этапа. Обучение счету в пределах пяти
Для проведения начальных уроков потребуются пять карточек с цифрами 1, 2, 3, 4, 5 и пять кубиков с размером ребра примерно 1,5-2 см, установленных в коробочке. В качестве кубиков я использую продающиеся в магазинах развивающих игр "кубики знаний", или "learning bricks", по 36 кубиков в коробке. На весь курс обучения вам потребуются три таких коробки, т.е. 108 кубиков. Для начальных уроков я беру пять кубиков, остальные понадобятся позже. Если вам не удастся подобрать готовые кубики, то их несложно будет изготовить самостоятельно. Для этого нужно лишь распечатать на плотной бумаге, 200-250 г/м2, рисунок, а затем вырезать из него заготовки кубиков, склеить их в соответствии с имеющимися указаниями, заполнить любым наполнителем, например, какой-нибудь крупой, и оклеить снаружи скотчем. Необходимо также изготовить коробочку для установки этих пяти кубиков в ряд. Склеить ее так же просто из распечатанного на плотной бумаге и вырезанного рисунка. На дне коробочки начерчены пять клеток по размеру кубиков, кубики должны помещаться в ней свободно.
Вы уже поняли, что обучение счету на начальном этапе будет производиться с помощью пяти кубиков и коробочки с пятью клетками для них. В связи с этим возникает вопрос: а чем же способ обучения с помощью пяти счетных кубиков и коробочки с пятью клетками лучше обучения при помощи пяти пальцев? Главным образом тем, что коробочку учитель время от времени может накрывать ладонью или убирать, благодаря чему расположенные в ней кубики и пустые клетки очень скоро запечатлеваются в памяти ребенка. А пальцы ребенка всегда остаются при нем, он может их увидеть или нащупать, и в запоминании просто не возникает необходимости, стимулирование механизма памяти не происходит.
Не следует также пытаться заменять коробочку с кубиками счетными палочками, другими предметами для счета или кубиками, не составленными в коробочке в ряд. В отличие от кубиков, выстроенных в ряд в коробочке, эти предметы располагаются беспорядочно, не образуют постоянной конфигурации и потому не откладываются в памяти в виде запомнившейся картинки.
Урок № 1
До начала урока выясните, какое количество кубиков ребенок способен определять одновременно, не пересчитывая их по штучке пальчиком. Обычно к трем годам дети могут сказать сразу, не подсчитывая, сколько в коробке кубиков, если их количество не превышает двух или трех, и лишь некоторые из них видят сразу четыре. Но есть дети, которые пока могут назвать лишь один предмет. Для того чтобы сказать, что видят два предмета, они должны посчитать их, показывая пальчиком. Для таких детей и предназначен первый урок. Остальные присоединятся к ним позже. Чтобы определить, какое количество кубиков ребенок видит сразу, ставьте попеременно в коробочку разное количество кубиков и спрашивайте: "Сколько кубиков в коробочке? Не считай, скажи сразу. Молодец! А сейчас? А сейчас? Правильно, молодец!" Дети могут сидеть или стоять у стола. Коробочку с кубиками ставьте на стол рядом с ребенком параллельно кромке стола.
Для выполнения заданий первого урока оставьте детей, которые пока могут определить только один кубик. Играйте с ними поочередно.
-
Игра "Приставляем цифры к кубикам" с двумя кубиками.
Положите на стол карточку с цифрой 1 и карточку с цифрой 2. Поставьте на стол коробочку и вложите в нее один кубик. Спросите ребенка, сколько кубиков в коробочке. После того как он ответит "один", покажите ему и назовите цифру 1 и попросите положить ее рядом с коробочкой. Добавьте в коробочку второй кубик и попросите посчитать, сколько теперь в коробочке кубиков. Пусть, если хочет, посчитает кубики пальчиком. После того как ребенок скажет, что в коробочке уже два кубика, покажите ему и назовите цифру 2 и попросите убрать от коробочки цифру 1, а на ее место положить цифру 2. Повторите эту игру несколько раз. Очень скоро ребенок запомнит, как выглядят два кубика, и начнет называть это количество сразу, не подсчитывая. Одновременно он запомнит цифры 1 и 2 и будет придвигать к коробочке цифру, соответствующую количеству кубиков в ней. -
Игра "Гномики в домике" с двумя кубиками.
Скажите ребенку, что сейчас будете играть с ним в игру "Гномики в домике". Коробочка — это понарошку домик, клеточки в ней — комнатки, а кубики — гномики, которые в них живут. Поставьте один кубик на первую клеточку слева от ребенка и скажите: "Один гномик пришел в домик". Потом спросите: "А если к нему придет еще один, сколько гномиков будет в домике?" Если ребенок затрудняется ответить, поставьте второй кубик на стол рядом с домиком. После того как ребенок скажет, что теперь в домике будет два гномика, позвольте ему поставить второго гномика рядом с первым на вторую клеточку. Затем спросите: "А если теперь один гномик уйдет, сколько гномиков останется в домике?" На этот раз ваш вопрос не вызовет затруднения и ребенок ответит: "Один останется".
Потом усложните игру. Скажите: "А теперь сделаем домику крышу". Накройте коробочку ладонью и повторите игру. Каждый раз, когда ребенок скажет, сколько гномиков стало в домике, после того как один пришел, или сколько их в нем осталось, после того как один ушел, убирайте крышу-ладонь и позволяйте ребенку самому добавлять или убирать кубик и убеждаться в правильности своего ответа. Это способствует подключению не только зрительной, но и тактильной памяти ребенка. Убирать всегда нужно последний кубик, т.е. второй слева.
Играйте в игры 1 и 2 поочередно со всеми детьми в группе. Скажите родителям, присутствующим на уроке, что дома они должны играть со своими детьми в эти игры ежедневно один раз в день, если только дети сами не просят больше.
Комментировать статью "Удивительно легкий способ обучения ребенка устному счету"
Не понимает математику. Как научить ребенка не бояться контрольных? Добрый день. Я мамашка не опытная, опыта с Математика в Как научить ребенка устному счету. Презентация " Математика для маленьких, счет от 1 до 10 с прибавлением единицы ": методический...
Обсуждение
Мой ребёнок родился с гипоксией,ещё какие-то некритичные для меня диагнозы на тот момент.
Вылилось это к логопедическим проблемами,но быстро их решили с логопедом.
Сразу стало видно гиперактивность,но она скрмпенсировалась к 11 годам.
А вот концентрация внимания и Математика это стало проблемой, при чем в младших классах тоже 3-4-5, а вот в пятом 2-3-4.
Репетитор по математике был всегда. Менялся,потому что я думала,что дело в репетиторе,плохо объясняет!
Но в ноябре в 5 классе,я привезла ребёнка в Москву к невропатологу,по рекомендациям и он нам сказал,после обследования и тестов,что это дефицит внимания.
Назначением была стратера (но это только по рецептам), пантогам. Так же обязательные занятия с Нейропсихологом и с психологом (когнитивные методики).
Знаете,сама не могу поверить,но результат есть!
Теперь февраль и у неё тверда 4 выходит ща триместр.
И репетитор по математике хвалит,что стала внимательна!
И сама учительница по математике(а то она мне а сентябре звонила,что у неё 2 за контрольную и надо с дочкой заниматься! А как ещё заниматься,если она весь август занималась и сентябрт!)
Устный счет - как научить? Хорошо отработаете счет пределах десятка и дальше не будет проблем со счетом, когда с переходом через десяток считать начнут. Удивительно легкий способ обучения ребенка устному счету. Начальные уроки первого этапа.
Обсуждение
1. Заниматься с ним самой в дополнение к школе + др. специалистам.
2. Полностью отойти от школьной методики от частного к общему, у наших детей это "не прокатывает", они "за кустами не видят леса". Подход должен быть "от общего к частному", т.е. сначала даете общее видение, не вдаваясь в подробности, потом какую-нибудь одну сторону разбираете и повторяете до тошноты. Например:
Мы говорим - речь - части речи - самостоятельные (именные) и служебные- самостоятельные: имя сущ., имя прилаг., имя числительное, наречие, глагол, причастие и деепричастие; служебные: предлог, союз, частица + особая часть речи - междометие. Имя сущ - собств., нариц. итд,итп. Начинаем всегда с самого простого: Мы говорим - речь. Пока не выучит, не переходите к частям речи. Затем, когда все освоено, ежедневно 100500 раз проходите по всему дереву, пока у ребенка не начинает отскакаивать от зубов. Дальше идет усложнение задачи, уже опираемся на какой-нибудь знакомый подраздел и танцуем от него. Но регулярно повторяем всю конструкцию.
3. В математике долго и мучительно считаем на пальцах. Потом, когда счет станет безошибочным и быстрым, накрываем пальцы газетой или полотенцем, считаем на ощупь, затем закрываем глаза и представляем пальцы в уме, затем просто считаем в уме.
4. Применяем доступные виды дифференциации (или выделения). Например, разряды чисел: единицы зеленые, десятки желтые, сотни красные. Можно использовать тактильные, звуковые - это зависит от возможностей ребенка.
5. Труд до седьмого пота, повторение до мозолей на языке. Никаких "обнять и плакать"! Нашим детям дано всё, просто подход должен быть ДРУГИМ. А там и интегралы с производными покорятся.
где учитесь?
У моего тоже самое, еще и осложнено тем, что началка заканчивается, продолжения не будет, куда идти не представляю(
Не понимает математику. Образование, развитие. Ребенок от 7 до 10. Не пойму, что происходит с математикой и как помочь ребенку? Сыну 11 лет, учится в 6-м классе. Как научить ребенка устному счету. Версия для печати.
Обсуждение
Здравствуйте, я бы посоветовала обьеснять более менее чем легко допустим такой пример:
576-78=?
Об ясните что из 76 78 вычесть не могу.
К 6 нужно прибавить 10 тоесть занимаем один десяток.
Из 16 вычитаю 8 получается 8
Значит 8 на месте единиц
Так как мы заняли один десяток у 70 значит не 70 а 60
Далее:
Из 560 вычитаю 70 = 490 да ещё мы помним то что на месте единиц 8 получилось 498.
Надеюсь вы подтяните математику!!!
Удачи.
Репетитор нужен в том случае, если ребенок НЕ понимает сложный материал, а родители НЕ способны его объяснить. В Вашем случае дочка (имея на руках 3 объяснения одного и того же) запутается окончательно.
Попробуйте скачать флэш-игры на планшет или телефон. Сейчас много классных приложений, где можно в
игровой форме
подтянуть математику, устный счет, порешать задачки на логику и вообще потренировать
пространственное мышление
. Понаблюдайте, какие задачки вызывают у дочери сложности, так Вы выделите проблемные области, которые стоит пройти еще раз.
Как научить ребенка устному счету. Презентация " Математика для маленьких, счет от 1 до 10 с прибавлением единицы ": методический материал для воспитателя. Как научить ребенка устному счету и сохранить навык быстрого счета на всю жизнь?
Обсуждение
У Петерсон удачные схемы перевода - посмотрите в учебниках 3 - 4 классов. Или выстроите сами - единицы измерения в ряд, от большей к меньшей: 1т - 1ц - 1кг - 1г. Между ними внизу дуги, под дугами соотношение (10, 100, 1000). И стрелочки: вправо - умножаем (при переводе в более мелкие), влево - делим (в крупные). Скажем, 35 т перевести в граммы - 35 * 10 *100*1000 = 35* 1000000 = 35000000г.
я думаю, надо очень хорошо проработать
базовое понятие
. Мне важно не чтобы пройти тему и забыть, а чтобы ребенок ее понял и прочувствовал.
Я измеряла с ребенками разные вещи разными МЕРКАМИ - например комнату - шагами, линейками, портфелями, удавами...
Потом площади также мерками - стол например, квадратиками бумаги: просто - сколько их там поместится, тетрадями. А если взять квадратики поменьше - будет точнее, но дольше.
Потом уже переходили непосредственно к вычислениям. А оказывается можно не выкладывать каждый раз мерки руками, а арифметически поделить... Комната равна по длинне 3 удавам, и она же в портфелях столько-то(потому что в одном удаве по длине помещается четыре портфеля), а в пеналах столько то (потому что портфель по длинне равен двум пеналам).
Потом уже как один из видов мерки брали метры, сантиметры, га, квадратные величины
Там же устный счет – основа первого класса. Извините, Лен, что влезла, но проблема та же, тоже мучаемся, но мой какой-то Знаю, что не математик, и хотела облегчить ему "первоклассную" жизнь - понять (или выучить) состав числа. Как только не играли - наизусть не...
Обсуждение
Для этого нужно очень хорошо заучить состав чисел до 10. Эти знания жизненно необходимы при решении примеров на сложение и вычитание. Для того чтобы хорошо запомнить состав числа надо просто очень много раз повторить пары составляющие это число. Есть приложение для iPad и iPhone которое облегчает ребенку этот процесс превращая его в игру с привлекательными фишками и звуками. Приложение уже опробовано многими пользователями в течении нескольких лет. Это приложение несмотря на его простоту очень эффективно, о нем очень хорошо отзываются специалисты в Сингапуре, и его используют в своей практике многие образовательные учереждения по всему миру. Специально для посетителей.сайт мы дарим 5 подарочных промокодов для этого приложения:
6H3LW7LMHHJ3
HJNPJPHNAMFT
W7K9W6MHPXAP
T94P34NEPYJN
4KP94RPEF3YR
Вы можете скачать приложение Состав числа до 10 в App Store:
Обсуждение
Пример 3+4 будет пересчитывать, а спросить сколько будет 3 конфеты и еще 4 конфеты сразу ответит, что семь.
Кстати,в школах у нас учать счету именно "на пальцах".
В 4 года сын считал, применяя состав числа. Сейчас считает присчитывая единицы. Какая связь с будущими сложностями с алгеброй я не понимаю. В тетрадке Микулиной "Сказочные цифры" (один из авторов учебника по математикеЭД) Мишенька решает со скоростью поросячьего визга все примерчики с символами в системах линейных уравнений . Какая трагедия то? Для программиста идея движения вдоль числового ряда даже предпочтительнее, многие задачи именно так и решаются. В экзаменационных задачах, которые надо решить в целых числах, тоже такой метод перебора удобен. Мне вообще удобнее алгоритм решения системы уравнений составить и в комп все это безобразие заложить, чем с цифирьками париться. Мне очень не нравится, что из школьных кабинетов у первоклассников исчезли большущие счеты, у Перельмана хорошо про счеты написано, я в семь лет сама разобралась по его книжке и с удовольствием со счетами играла. Веками считали на этих костяшках, моя мама была виртуозом, косточки так и летали, никакой арифмометр ей был не нужен. На пальцах, костяшках, при присчитывании в уме числа видятся как-то по другому, какие-то закономерности по другому замечаются. Пусть пока малы дети все перепробуют, все равно до настоящей математики с доказательствами им еще очень-очень далеко.
В век кассовых аппаратов и калькуляторов люди все реже считают в уме. Они практически полностью перешли на вычислительную технику, но и она частенько дает сбои, или ее просто не будет рядом, когда она нужна. Незаметно мы утрачиваем навыки точного и быстрого счета и иногда с опозданием понимаем, что мы уже не так хороши в этом деле. Но, быстро считать в уме – это неоспоримое достоинство и преимущество. Человек, которые запросто оперирует цифрами, практически никогда не будет обманут при расчетах. Но важно то, что это будут развивать и поддерживать в форме умственные способности, что важно для детей и молодых людей.
Как научиться быстро считать в уме ребенку
Все навыки лучше всего развиваются и закрепляются в детстве. Учиться считать, также, как и читать, можно с 1.5-2 лет. Особенности этого возраста заключаются в том, что у ребенка сначала накопятся пассивные знания – он будет понимать, знать, но из-за малого словарного запаса , будет мало разговаривать. До пяти лет малыш может обучиться в уме производить простые действия – вычитания и сложения в пределах двадцати. Если в два – три с половиной годика вы будете использовать наглядные методы в обучении, то позже малыш сможет оперировать только цифрами, без подкрепления наглядным материалом.
Если вы хотите, чтобы у вашего ребенка было больше шансов, что процесс оперирования крупными значениями и математическими действиями будет даваться легче и пойдет быстрее, тогда нужно как можно раньше научить его считать.
Обучать детей до четырех лет лучше с наглядными материалами. Считать можно все, что хотите. Пожарные машины, которые спешат на пожар, мотоциклисты, которые с грохотом пролетают мимо вас, кошки, которые греются на солнышке, стайки птиц – все, что вокруг вас можно посчитать. С навыками счета одновременно будут развиваться наблюдательность и внимание. Постепенно увеличивайте нагрузку. Утром вы видели 2 кошек, а когда возвращались домой, еще 3. Спросите у ребенка: «Заметил ли он, что сегодня так много кошек! Сколько он заметил?». Похвалите его за точность и наблюдательность, ведь эти качества пригодятся ему в жизни.
В начальной школе малышу необходимо быстро и свободно производить любые вычисления в пределах, определенных школьной программой. Чтобы научиться считать быстро, необходимы постоянные тренировки. Поэтому задачей родителей является побуждение малыша к счету и делать так, чтобы это происходило интересно. Чем чаще ваш ребенок будет тренироваться, тем легче ему будет делать точные и быстрые вычисления в уме.
Как научиться быстро считать взрослому
Если ребенок с детства обучался быстрому счету, то со временем он без особых усилий будет оперировать с большими значениями. Но если человек более зрелого возраста или студент решил овладеть быстрым счетом , то необходимо применить незамысловатую методику, которая несомненно принесет положительные результат.
Любое обучения начинается с малого. Если вы знаете таблицу умножения, это отлично. Если же забыли, или никогда не знали, стоит воспользоваться таким методом счета. К примеру, необходимо узнать, сколько будет 8х6. Записываем пример таким образом:
Что происходит когда собака облизывает лицо
Как вести себя если вас окружают хамы
Десять привычек, которые делают людей хронически несчастливыми
2 4
—-=48
8х6
Ответ 48. Мы его получили, записав пример 8х6, провели над ним прямую линию и над каждой цифрой записали, сколько не хватает до 10. Над 8 пишем 2, на 6 пишем 4. Первая цифра ответа – это разница между числами в нижней и верхней строках по диагонали. 8-4=4, 6-2=4 – для вычисления можете взять любую пару – ответ будет всегда одинаковым. Итак мы поняли, что первая цифра это 4. Теперь найдем вторую. Для этого следует умножить цифры верхней строки 2х4=8. Наш пример решен: 8х6=48.
Немного по-другому считаются более крупные числа. Например, вам необходимо подсчитать 11х13.
1 3
——=140+3=143
11х13
В нижней строчке записываем пример 11х13. В верхней пишем, на сколько эти числа превышают 10. Получаем 1 и 3. Сложим числа по диагонали. Получаем 11+3=14, 13+1=14. Мы получили 14 десятков, поскольку исходные цифры превышают 10. Поэтому 14 умножим на 10. 14х10=140. Осталось лишь умножить верхние числа 1х3=3 и прибавить полученную цифру к ответу.
Такие способы вычисления сложно проводить только сначала. Поэтому начинайте с простых примеров и постепенно усложняйте. Но дабы научиться считать в уме, необходимо полностью избавиться от записей, а делать все в голове.
По таким способам можно учить и детей, однако только тогда, когда они полностью знают школьную программу . В ином случае вы не добьетесь положительных результатов, а лишь навредите усвоению школьных знаний.
Когда освоите манипулирование двузначными числами, можете переходить к вычислению многозначных – сотен и даже тысяч.
Видео уроки