Что такое валентность химических. Определяем валентность химических элементов
Валентность - это способность атома данного элемента образовывать определенное количество химических связей.
Образно говоря, валентность - это число "рук", которыми атом цепляется за другие атомы. Естественно, никаких "рук" у атомов нет; их роль играют т. н. валентные электроны.
Можно сказать иначе: валентность - это способность атома данного элемента присоединять определенное число других атомов.
Необходимо четко усвоить следующие принципы:
Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство).
Элементы с постоянной валентностью необходимо запомнить:
Остальные элементы могут проявлять разную валентность.
Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент.
Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.
Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.
Важно запомнить несколько исключений : максимальная (и единственная) валентность фтора равна I (а не VII), кислорода - II (а не VI), азота - IV (способность азота проявлять валентность V - популярный миф, который встречается даже в некоторых школьных учебниках).
Валентность и степень окисления - это не тождественные понятия.
Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность - нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N 2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.
Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого.
Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента .
В соединении A x B y: валентность (А) x = валентность (В) y
Пример 1 . Найти валентности всех элементов в соединении NH 3 .
Решение . Валентность водорода нам известна - она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).
Пример 2 . Найти валентности всех элементов в молекуле Cl 2 O 5 .
Решение . У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 2 = 2 Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).
Пример 3 . Найти валентность хлора в молекуле SCl 2 , если известно, что валентность серы равна II.
Решение . Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl - элементы с переменной валентностью. С учетом дополнительной информации , решение строится по схеме примеров 1 и 2. Ответ: Cl(I).
Зная валентности двух элементов, можно составить формулу бинарного соединения.
В примерах 1 - 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.
Пример 4 . Составьте формулу соединения кальция с водородом.
Решение . Валентности кальция и водорода известны - II и I соответственно. Пусть формула искомого соединения - Ca x H y . Вновь составляем известное уравнение: 2 x = 1 у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH 2 .
"А почему именно CaH 2 ? - спросите вы. - Ведь варианты Ca 2 H 4 и Ca 4 H 8 и даже Ca 10 H 20 не противоречат нашему правилу!"
Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.
"Значит, соединения типа N 2 O 4 или C 6 H 6 невозможны? - спросите вы. - Следует заменить эти формулы на NO 2 и CH?"
Нет, возможны. Более того, N 2 O 4 и NO 2 - это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С 6 Н 6).
Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.
Пример 5 . Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.
Решение . Пусть формула соединения - S x F y . Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 x = 1 y. Несложно понять, что наименьшие возможные значения переменных - это 1 и 6. Ответ: SF 6 .
Вот, собственно, и все основные моменты.
А теперь проверьте себя! Предлагаю пройти небольшой тест по теме "Валентность" .
Одного химического элемента присоединять или замещать определённое количество атомов другого.
За единицу валентности принята валентность атома водорода , равная 1, то есть водород одновалентен. Поэтому валентность элемента указывает на то, со сколькими атомами водорода соединён один атом рассматриваемого элемента. Например, HCl , где хлор - одновалентен; H 2O , где кислород - двухвалентен; NH 3 , где азот - трёхвалентен.
Таблица элементов с постоянной валентностью.
Формулы веществ можно составлять по валентностям входящих в них элементов. И наоборот, зная валентности элементов, можно составить из них химическую формулу.
Алгоритм составления формул веществ по валентности.
1. Записать символы элементов.
2. Определить валентности входящих в формулу элементов.
3. Найти наименьшее общее кратное численных значений валентности.
4. Найти соотношения между атомами элементов путём деления найденного наименьшего общего кратного на соответствующие валентности элементов.
5. Записать индексы элементов в химической формуле.
Пример: составим химическую формулу оксида фосфора.
1. Запишем символы:
2. Определим валентности:
4. Найдём соотношения между атомами:
5. Запишем индексы:
Алгоритм определения валентности по формулам химических элементов.
1. Записать формулу химического соединения.
2. Обозначить известную валентность элементов.
3. Найти наименьшее общее кратное валентности и индекса.
4. Найти соотношение наименьшего общего кратного к количеству атомов второго элемента. Это и есть искомая валентность.
5. Сделать проверку путём перемножения валентности и индекса каждого элемента. Их произведения должны быть равны.
Пример: определим валентность элементов сульфида водорода.
1. Запишем формулу:
H 2 S
2. Обозначим известную валентность:
H 2 S
3. Найдём наименьшее общее кратное:
H 2 S
4. Найдём соотношение наименьшего общего кратного к количеству атомов серы :
H 2 S
5. Сделаем проверку.
На уроках химии вы уже познакомились с понятием валентности химических элементов . Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.
Валентность и химический анализ
Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.
С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?
Понятие «валентность» - одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.
Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.
Зная это, ученые смогли описать природу химической связи . Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.
Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.
Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.
Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH 3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН 4), по тому же принципу, – IV.
Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.
Как вы уже обратили внимание, обозначается валентность римскими цифрами.
Валентность и кислоты
Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H 2 SO 3 валентность SO 3 – I, в HСlO 3 валентность СlO 3 – I.
Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO 2 (I) – HNO 2 , S 4 O 6 (II) – H 2 S 4 O 6 .
Валентность и формулы
Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.
Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.
Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.
Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.
Чтобы было понятно, возьмем формулу оксида железа Fe 2 O 3 . Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.
- Пример: у вас есть формулы Mn 2 O 7 . Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.
Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.
- Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р 2 О 5 .
Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.
Например: оксиды меди имеют красную (Cu 2 O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН) 2) цвета.
А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):
Характеристики валентности
Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.
Валентность может быть:
- постоянной (металлы главных подгрупп);
- переменной (неметаллы и металлы побочных групп):
- высшая валентность;
- низшая валентность.
Постоянной в различных химических соединениях остается:
- валентность водорода, натрия, калия, фтора (I);
- валентность кислорода, магния, кальция, цинка (II);
- валентность алюминия (III).
А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.
Валентность и электронная теория
В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.
В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.
Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе, соответсвует порядковому номеру группы в периодичнеской системе.
Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.
Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.
Таблица валентности химических элементов
Порядковый номер хим. элемента (атомный номер) |
Наименование |
Химический символ |
Валентность |
1 |
Водород / Hydrogen
Гелий / Helium Литий / Lithium Бериллий / Beryllium Углерод / Carbon Азот / Nitrogen Кислород / Oxygen Фтор / Fluorine Неон / Neon Натрий / Sodium Магний / Magnesium Алюминий / Aluminum Кремний / Silicon Фосфор / Phosphorus Сера / Sulfur Хлор / Chlorine Аргон / Argon Калий / Potassium Кальций / Calcium Скандий / Scandium Титан / Titanium Ванадий / Vanadium Хром / Chromium Марганец / Manganese Железо / Iron Кобальт / Cobalt Никель / Nickel Медь / Copper Цинк / Zinc Галлий / Gallium Германий /Germanium Мышьяк / Arsenic Селен / Selenium Бром / Bromine Криптон / Krypton Рубидий / Rubidium Стронций / Strontium Иттрий / Yttrium Цирконий / Zirconium Ниобий / Niobium Молибден / Molybdenum Технеций / Technetium Рутений / Ruthenium Родий / Rhodium Палладий / Palladium Серебро / Silver Кадмий / Cadmium Индий / Indium Олово / Tin Сурьма / Antimony Теллур / Tellurium Иод / Iodine Ксенон / Xenon Цезий / Cesium Барий / Barium Лантан / Lanthanum Церий / Cerium Празеодим / Praseodymium Неодим / Neodymium Прометий / Promethium Самарий / Samarium Европий / Europium Гадолиний / Gadolinium Тербий / Terbium Диспрозий / Dysprosium Гольмий / Holmium Эрбий / Erbium Тулий / Thulium Иттербий / Ytterbium Лютеций / Lutetium Гафний / Hafnium Тантал / Tantalum Вольфрам / Tungsten Рений / Rhenium Осмий / Osmium Иридий / Iridium Платина / Platinum Золото / Gold Ртуть / Mercury Талий / Thallium Свинец / Lead Висмут / Bismuth Полоний / Polonium Астат / Astatine Радон / Radon Франций / Francium Радий / Radium Актиний / Actinium Торий / Thorium Проактиний / Protactinium Уран / Uranium |
H |
I
(I), II, III, IV, V I, (II), III, (IV), V, VII II, (III), IV, VI, VII II, III, (IV), VI (I), II, (III), (IV) I, (III), (IV), V (II), (III), IV (II), III, (IV), V (II), III, (IV), (V), VI (II), III, IV, (VI), (VII), VIII (II), (III), IV, (VI) I, (III), (IV), V, VII (II), (III), (IV), (V), VI (I), II, (III), IV, (V), VI, VII (II), III, IV, VI, VIII (I), (II), III, IV, VI (I), II, (III), IV, VI (II), III, (IV), (V) Нет данных Нет данных (II), III, IV, (V), VI |
В скобках даны те валентности, которые обладающие ими элементы проявляют редко.
Валентность и степень окисления
Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика , то степень окисления может быть отрицательной, положительной или равной нулю.
Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение , валентность и степень окисления могут совпадать (Н 2 О, СН 4 и др.) и различаться (Н 2 О 2 , HNO 3).
Заключение
Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.
Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.
Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Таблица Дмитрия Ивановича Менделеева – это многофункциональный справочный материал, по которому дозволено узнать самые нужные данные о химических элементах. Самое основное – знать основные тезисы ее «чтения», то есть надобно уметь положительно пользоваться этим информационным материалом, что послужит красивым подспорьем для решения всяких задач по химии. Тем больше что таблица является разрешенной на всех видах контроля познаний, включая даже ЕГЭ.
Вам понадобится
- Таблица Д.И.Менделеева, ручка, бумага
Инструкция
1. Таблица представляет собой конструкцию, в которой расположены химические элементы по своим тезисам и законам. То есть, дозволено сказать, что таблица – это многоэтажный «дом», в котором «живут» химические элементы, причем всякий их них имеет свою собственную квартиру под определенным номером. По горизонтали располагаются «этажи» — периоды, которые могут быть малые и огромные. Если период состоит из 2-х рядов (что указано сбоку нумерацией), то такой период именуется огромным. Если он имеет только один ряд, то именуется малым.
2. Также таблица поделена на «подъезды» — группы, которых каждого восемь. Как в любом подъезде квартиры находятся слева и справа, так и тут химические элементы располагаются по такому же тезису. Только в данном варианте их размещение неравномерно – с одной стороны огромнее элементов и тогда говорят о основной группе, с иной — поменьше и это свидетельствует о том, что группа побочная.
3. Валентность – это способность элементов образовывать химические связи. Существует валентность непрерывная, которая не меняется и переменная, имеющая разное значение в зависимости от того, в состав какого вещества входит элемент. При определении валентности по таблице Менделеева нужно обратить внимание на такие колляции: № группы элементы и ее тип (то есть основная либо побочная группа). Непрерывная валентность в этом случае определяется по номеру группы основной подгруппы. Дабы узнать значение переменной валентности (если таковая есть, причем, традиционно у неметаллов), то необходимо из 8 (каждого 8 групп – отсель такая цифра) вычесть № группы, в которой располагается элемент.
4. Пример № 1. Если посмотреть на элементы первой группы основной подгруппы (щелочные металлы), то дозволено сделать итог, что все они имеют валентность, равную I (Li, Na, К, Rb, Cs, Fr).
5. Пример № 2. Элементы 2-й группы основной подгруппы (щелочно-земельные металлы) соответственно имеют валентность II (Be, Mg, Ca, Sr, Ba, Ra).
6. Пример № 3. Если говорить о неметаллах, то скажем, Р (фосфор) находится в V группе основной подгруппы. Отсель его валентность будет равна V. Помимо этого фосфор имеет еще одно значение валентности, и для ее определения нужно исполнить действие 8 — № элемента. Значит, 8 – 5 (номер группы фосфора) = 3. Следственно, вторая валентность фосфора равна III.
7. Пример № 4. Галогены находятся в VII группе основной подгруппы. Значит, их валентность будет равна VII. Впрочем рассматривая, что это неметаллы, то надобно произвести арифметическое действие: 8 – 7 (№ группы элемента) = 1. Следственно, иная валентность галогенов равна I.
8. Для элементов побочных подгрупп (а к ним относятся только металлы) валентность необходимо запоминать, тем больше что в большинстве случае она равна I, II, реже III. Также придется заучить валентности химических элементов, которые имеют больше 2-х значений.
Со школы либо даже прежде весь знает, всё вокруг, включая и нас самих, состоит их атомов – наименьших и неделимых частиц. Вследствие способности атомов соединяться друг с ином, разнообразие нашего мира громадно. Способность эта атомов химического элемента образовывать связи с другими атомами называют валентностью элемента .
Инструкция
1. Представление валентности вошло в химию в девятнадцатом веке, тогда за её единицу была принята валентность атома водорода. Валентность иного элемента может быть определена как число атомов водорода, которое присоединяет к себе один атом иного вещества. Подобно валентности по водороду определяется валентность по кислороду, которая, как водится, равна двум и, значит, дозволяет определить валентность других элементов в соединениях с кислородом несложными арифметическими действиями . Валентность элемента по кислороду равняется удвоенному числу атомов кислорода, которое может присоединить один атом данного элемента .
2. Для определения валентности элемента дозволено воспользоваться и формулой. Вестимо, что существует определенное соотношение между валентностью элемента , его равнозначной массой и молярной массой его атомов. Связь между этими качествами выражается формулой: Валентность = Молярная масса атомов/Эквивалентная масса. Потому что равнозначная масса – это то число, которое нужно для замещения одного моля водорода либо для реакции с одним молем водорода, то чем огромнее молярная масса в сопоставлении с массой равнозначной, тем большее число атомов водорода может заместить либо присоединить к себе атом элемента , а значит тем выше валентность.
3. Связь между химическими элемента ми имеет разную природу. Это может быть ковалентная связь, ионная, металлическая. Для образования связи атому нужно иметь: электрический заряд , неспаренный валентный электрон, свободную валентную орбиталь либо неподеленную пару валентных электронов. Совместно эти особенности определяют валентное состояние и валентные способности атома.
4. Зная число электронов атома, которое равно порядковому номеру элемента в Периодической системе элементов, руководствуясь тезисами наименьшей энергии,тезисом Паули и правилом Хунда дозволено возвести электронную конфигурацию атома. Эти построения дозволят проанализировать валентные вероятности атома. Во всех случаях, в первую очередь реализуются вероятности образовывать связи за счет наличия неспаренных валентных электронов, добавочные валентные способности, такие как свободная орбиталь либо неподеленная пара валентных электронов, могут остаться нереализованными, если на это неудовлетворительно энергии.И каждого вышесказанного дозволено сделать итог, что проще каждого определить валентность атома в каком-нибудь соединении, и значительно труднее узнать валентные способности атомов. Однако практика сделает простым и это.
Видео по теме
Совет 3: Как определить валентность химических элементов
Валентность химического элемента — это способность атома присоединять либо замещать определенное число других атомов либо ядерных групп с образованием химической связи. Необходимо помнить, что некоторые атомы одного и того же химического элемента могут иметь различную валентность в различных соединениях.
Вам понадобится
- таблица Менделеева
Инструкция
1. Водород и кислород принято считать одновалентным и двухвалентным элементами соответственно. Мерой валентности является число атомов водорода либо кислорода, которые элемент присоединяет для образования гидрида либо оксида.Пускай X — элемент, валентность которого необходимо определить. Тогда XHn — гидрид этого элемента, а XmOn — его оксид.Пример: формула аммиака — NH3, тут у азота валентность 3. Натрий одновалентен в соединении Na2O.
2. Для определения валентности элемента необходимо умножить число атомов водорода либо кислорода в соединении на валентность водорода и кислорода соответственно, а после этого поделить на число атомов химического элемента, валентность которого находится.
3. Валентность элемента может быть определена и по иным атомам с вестимой валентностью. В разных соединениях атомы одного и того же элемента могут проявлять разные валентности. Скажем, сера двухвалентна в соединениях H2S и CuS, четырехвалентна в соединениях SO2 и SF4, шестивалентна в соединениях SO3 и SF6.
4. Максимальную валентность элемента считают равной числу электронов во внешней электронной оболочке атома. Максимальная валентность элементов одной и той же группы периодической системы обыкновенно соответствует ее порядковому номеру. К примеру, максимальная валентность атома углерода С должна быть равной 4.
Видео по теме
Для школьников постижение таблицы Менделеева — ужасный сон. Даже тридцать шесть элементов, которые обыкновенно задают преподаватели, оборачиваются часами утомительной зубрежки и головной болью. Многие даже не верят, что выучить таблицу Менделеева реально. Но использование мнемотехники способно гораздо облегчить жизнь школярам.
Инструкция
1. Разобраться в теории и предпочесть необходимую техникуПравила, облегчающие запоминание материала, именуются мнемоническими. Основная их хитрость — создание ассоциативных связей, когда абстрактная информация упаковывается в яркую картинку, звук либо даже запах. Существует несколько мнемонических техник. Скажем, дозволено написать рассказ из элементов запоминаемой информации, поискать созвучные слова (рубидий — рубильник, цезий — Юлий Цезарь), включить пространственное воображение либо легко зарифмовать элементы периодической таблицы Менделеева.
2. Баллада об азотеРифмовать элементы периодической таблицы Менделеева отличнее со смыслом, по определенным знакам: по валентности, скажем. Так, щелочные металлы рифмуются дюже легко и звучат, как песенка: «Литий, калий, натрий, рубидий, цезий франций». «Магний, кальций, цинк и барий — их валентность равна паре» — неувядающая классика школьного фольклора. На ту же тему: «Натрий, калий, серебро - одновалентное добродушно» и «Натрий, калий и аргентум - навечно одновалентны». Созидание в различие от зубрежки, которой хватает максимум на пару дней, стимулирует долговременную память. А значит, огромнее сказок про алюминий, стихов про азот и песен о валентности — и запоминание пойдет как по маслу.
3. Кислотный триллерДля упрощения запоминания придумывается история, в которой элементы таблицы Менделеева превращаются в героев, детали пейзажа либо сюжетные элементы. Вот, скажем, каждым знаменитый текст: «Азиат (Азот) стал лить (Литий) воду (Водород)в сосновый Бор (Бор). Но Не он (Неон) был нам надобен, а Магнолия (Магний)». Его дозволено дополнить историей о феррари (сталь — феррум), в которой ехал тайный шпион «Хлор нуль семнадцать» (17 — порядковый номер хлора), дабы поймать маньяка Арсения (мышьяк — арсеникум), у которого было 33 зуба (33 — порядковый номер мышьяка), но внезапно что-то кислое попало ему в рот (кислород), это было восемь отравленных пуль (8 — порядковый номер кислорода)… Продолжать дозволено до бесконечности. Кстати, роман, написанный по мотивам таблицы Менделеева, дозволено пристроить учительнице литературы в качестве экспериментального текста. Ей наверно понравится.
4. Возвести замок памятиЭто одно из наименований достаточно результативной техники запоминания, когда включается пространственное мышление . Секрет ее в том, что все мы можем без труда описать свою комнату либо путь от дома до магазина, школы, института. Для того, дабы запомнить последовательность элементов необходимо поместить их по дороге (либо в комнате), причем представить всякий элемент дюже ясно, зримо, ощутимо. Вот водород — худосочный блондин с вытянутым лицом. Работяга, тот, что кладет плитку — кремний. Группа дворян в драгоценный машине — инертные газы. И, безусловно, продавец воздушных шариков — гелий.
Обратите внимание!
Не необходимо принуждать себя запоминать информацию на карточках. Самое лучшее связать весь элемент с некоторым блестящим образом. Кремний — с Кремниевой долиной. Литий — с литиевыми батарейками в
мобильном телефоне
. Вариантов может быть уйма. Но комбинация визуального образа, механического запоминания, тактильного ощущения от шероховатой либо, напротив, гладкой глянцевой карточки, поможет без труда поднять самые мельчайшие детали из недр памяти.
Полезный совет
Дозволено нарисовать такие же карточки с информацией об элементах, как были в свое время у Менделеева, но только дополнить их нынешней информацией: числом электронов на внешнем ярусе, скажем. Все, что надобно, это раскладывать их перед сном.
Химия для всякого школьника начинается с таблицы Менделеева и фундаментальных законов. И теснее только потом, уяснив для себя, что же постигает эта трудная наука, дозволено приступать к составлению химических формул . Для грамотной записи соединения необходимо знать валентность атомов, составляющих его.
Инструкция
1. Валентность – способность одних атомов удерживать вблизи себя определенное число других и выражается она числом удерживаемых атомов. То есть, чем мощней элемент, тем огромнее у него валентность .
2. Для примера дозволено применять два вещества – HCl и H2O. Это классно знаменитые каждом соляная кислота и вода. В первом веществе содержится один атом водорода (H) и один атом хлора (Cl). Это говорит о том, в данном соединении они образуют одну связь, то есть удерживают вблизи себя один атом. Следственно, валентность и одного, и иного равна 1. Так же легко определить валентность элементов, составляющих молекулу воды. Она содержит два атома водорода и один атом кислорода. Следственно, атом кислорода образовал две связи для присоединения 2-х водородов, а они, в свою очередь, по одной связи. Значит, валентность кислорода равна 2, а водорода – 1.
3. Но изредка доводится сталкиваться с вещества ми больше трудными по строению и свойствам составляющих их атомов. Существует два типа элементов: с непрерывной (кислород, водород и др.) и непостоянной валентность ю. У атомов второго типа это число зависит от соединения, в состав которого они входят. В качестве примера дозволено привести серу (S). Она может иметь валентности 2, 4, 6 и изредка даже 8. Определить способность таких элементов, как сера, держать вокруг себя другие атомы, немножко труднее. Для этого нужно знать свойства других составляющих вещества .
4. Запомните правило: произведение числа атомов на валентность одного элемента в соединении должна совпадать с таким же произведением для иного элемента. Это дозволено проверить опять обратившись к молекуле воды (H2O):2 (число водорода) * 1 (его валентность ) = 21 (число кислорода) * 2 (его валентность ) = 22 = 2 – значит все определено правильно.
5. Сейчас проверьте данный алгорифм на больше трудном веществе, скажем, N2O5 – оксиде азота. Ранее указывалось, что кислород имеет непрерывную валентность 2, следственно дозволено составить уравнение:2 ( валентность кислорода) * 5 (его число) = Х (неведомая валентность азота) * 2 (его число)Путем несложных арифметических вычислений дозволено определить, что валентность азота в составе данного соединения равна 5.
Валентность — это способность химических элементов держать определенное число атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность довольно примитивно.
Инструкция
1. Возьмите на заметку, что обозначается показатель валентности римскими цифрами и ставится над знаком элемента.
2. Обратите внимание: если формула двухэлементного вещества написана верно, то,при умножении числа атомов всякого элемента на его валентность, у всех элементовдолжны получиться идентичные произведения.
3. Примите к сведению, что валентность атомов одних элементов непрерывна, а других — переменна, то есть, имеет качество меняться. Скажем, водород во всех соединениях одновалентен, от того что образует только одну связь. Кислород горазд образовывать две связи, являясь при этом двухвалентным. А вот у серы валентность может быть II, IV либо VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера — элемент с переменной валентностью.
4. Подметьте, что в молекулах водородных соединений вычислить валентность дюже примитивно. Водород неизменно одновалентен, а данный показатель у связанного с ним элемента будет равняться числу атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.
5. Запомните основное правило определения валентности: произведение показателя валентности атома какого-нибудь элемента и числа его атомов в какой-нибудь молекуле неизменно равно произведению показателя валентности атома второго элемента и числа его атомов в данной молекуле.
6. Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V — это валентность атомов элементов, а К — число атомов в молекуле. С ее подмогой легко определить показатель валентности всякого элемента, если вестимы остальные данные.
7. Разглядите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, следственно, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.
Видео по теме
Открытие периодического закона и создание упорядоченной системы химических элементов Д.И. Менделеевым стали апогеем становления химии в XIX веке. Ученым был обобщен и классифицирован обширный материал умений о свойствах элементов.
Инструкция
1. В XIX веке не было никаких представлений о строении атома. Открытие Д.И. Менделеева являлось лишь обобщением опытных фактов, но их физический толк длинное время оставался непонятным. Когда возникли первые данные о строении ядра и разделении электронов в атомах, это дозволило взглянуть на периодический закон и систему элементов заново. Таблица Д.И. Менделеева дает вероятность наглядно проследить периодичность свойств элементов, встречающихся в природе.
2. Всякому элементу в таблице присвоен определенный порядковый номер (H — 1, Li — 2, Be — 3 и т.д.). Данный номер соответствует заряду ядра (числу протонов в ядре) и числу электронов, вращающихся вокруг ядра. Число протонов, таким образом, равно числу электронов, и это говорит о том, что в обыкновенных условиях атом электрически нейтрален.
3. Деление на семь периодов происходит по числу энергетических ярусов атома. Атомы первого периода имеют одноуровневую электронную оболочку, второго — двухуровневую, третьего — трехуровневую и т.д. При заполнении нового энергетического яруса начинается новейший период.
4. Первые элементы каждого периода характеризуются атомами, имеющими по одному электрону на внешнем ярусе, — это атомы щелочных металлов. Заканчиваются периоды атомами порядочных газов, имеющими всецело заполненный электронами внешний энергетический ярус: в первом периоде инертные газы имеют 2 электрона, в последующих — 8. Именно по причине схожего строения электронных оболочек группы элементов имеют сходные физико-химические свойства.
5. В таблице Д.И. Менделеева присутствует 8 основных подгрупп. Такое их число обусловлено максимально допустимым числом электронов на энергетическом ярусе.
6. Внизу периодической системы выделены лантаноиды и актиноиды в качестве независимых рядов.
7. С поддержкой таблицы Д.И. Менделеева дозволено пронаблюдать периодичность следующих свойств элементов: радиуса атома, объема атома; потенциала ионизации; силы сродства с электроном; электроотрицательности атома; степени окисления; физических свойств возможных соединений.
8. К примеру, радиусы атомов, если глядеть по периода, уменьшаются слева направо; растут сверху вниз, если глядеть по группы.
9. Отчетливо прослеживаемая периодичность расположения элементов в таблице Д.И. Менделеева осмысленно объясняется последовательным нравом заполнения электронами энергетических ярусов.
Периодический закон, являющийся основой нынешней химии и поясняющий обоснованности метаморфозы свойств химических элементов, был открыт Д.И. Менделеевым в 1869 году. Физический толк этого закона вскрывается при постижении трудного строения атома.
В XIX веке считалось, что ядерная масса является основной колляцией элемента, следственно для систематизации веществ применяли именно ее. Теперь атомы определяют и идентифицируют по величине заряда их ядра (числу протонов и порядковому номеру в таблице Менделеева). Однако, ядерная масса элементов за некоторыми исключениями (скажем, ядерная масса калия поменьше ядерной массы аргона) возрастает соизмеримо их заряду ядра.При увеличении ядерной массы отслеживается периодическое метаморфоза свойств элементов и их соединений. Это металличность и неметалличность атомов, ядерный радиус и объем, потенциал ионизации, сродство к электрону, электроотрицательность, степени окисления,
физические свойства
соединений (температуры кипения, плавления, плотность), их основность, амфотерность либо кислотность.
Сколько элементов в нынешней таблице Менделеева
Таблица Менделеева графически выражает открытый им периодический закон. В нынешней периодической системе содержится 112 химических элементов (последние – Мейтнерий, Дармштадтий, Рентгений и Коперниций). По последним данным, открыты и следующие 8 элементов (до 120 включительно), но не все из них получили свои наименования, и эти элементы пока еще немного в каких печатных изданиях присутствуют.Всякий элемент занимает определенную клетку в периодической системе и имеет свой порядковый номер, соответствующий заряду ядра его атома.
Как построена периодическая система
Структура периодической системы представлена семью периодами, десятью рядами и восемью группами. Весь период начинается щелочным металлом и заканчивается порядочным газом. Исключения составляют 1-й период, начинающийся водородом, и седьмой незавершенный период.Периоды делятся на малые и огромные. Малые периоды (1-й, 2-й, 3-й) состоят из одного горизонтального ряда, огромные (четвертый, пятый, шестой) – из 2-х горизонтальных рядов. Верхние ряды в огромных периодах именуются четными, нижние – нечетными.В шестом периоде таблицы позже лантана (порядковый номер 57) находятся 14 элементов, схожих по свойствам на лантан, – лантаноидов. Они вынесены в нижнюю часть таблицы отдельной строкой. То же самое относится и к актиноидам, расположенным позже актиния (с номером 89) и во многом повторяющим его свойства.Четные ряды крупных периодов (4, 6, 8, 10) заполнены только металлами.Элементы в группах проявляют идентичную высшую валентность в оксидах и других соединениях, и эта валентность соответствует номеру группы. Основные подгруппы вмещают в себя элементы мелких и крупных периодов, побочные – только крупных. Сверху вниз металлические свойства усиливаются, неметаллические – ослабевают. Все атомы побочных подгрупп – металлы.
Совет 9: Селен как химический элемент таблицы Менделеева
Химический элемент селен относится к VI группе периодической системы Менделеева, он является халькогеном. Природный селен состоит из шести стабильных изотопов. Вестимо также 16 радиоактивных изотопов селена.
Инструкция
1. Селен считается дюже редким и рассеянным элементом, в биосфере он активно мигрирует, образуя больше 50 минералов. Самые знаменитые из них: берцелианит, науманнит, самородный селен и халькоменит.
2. Селен содержится в вулканической сере, галените, пирите, висмутине и других сульфидах. Его добывают из свинцовых, медных, никелевых и других руд, в которых он находится в рассеянном состоянии.
3. В тканях большинства живых существ содержится от 0,001 до 1 мг/кг селена, некоторые растения, морские организмы и грибы его концентрируют. Для ряда растений селен является нужным элементом. Надобность человека и звериных в селене составляет 50-100 мкг/кг пищи, данный элемент владеет антиоксидантными свойствами, влияет на уйма ферментативных реакций и повышает чувствительность сетчатки глаза к свету.
4. Селен может существовать в разных аллотропических модификациях: аморфной (стекловидный, порошкообразный и коллоидный селен), а также кристаллической. При поправлении селена из раствора селенистой кислоты либо стремительным охлаждением его паров получают аморфный алый порошкообразный и коллоидный селен.
5. При нагревании всякий модификации этого химического элемента выше 220°С и дальнейшем охлаждении образуется стекловидный селен, он хрупок и владеет стеклянным блеском.
6. Особенно устойчив термически гексагональный серый селен, решетка которого построена из расположенных параллельно друг другу спиральных цепочек атомов. Его получают при помощи нагревания других форм селена до плавления и неторопливым охлаждением до 180-210°С. Внутри цепей гексагонального селена атомы связаны ковалентно.
7. Селен устойчив на воздухе, на него не действуют: кислород, вода, разбавленная серная и соляная кислоты , впрочем он отменно растворяется в азотной кислоте. Взаимодействуя с металлами, селен образует селениды. Знаменито уйма комплексных соединений селена, все они ядовиты.
8. Получают селен из отходов бумажного либо сернокислого производства, способом электролитического рафинирования меди. В шламах данный элемент присутствует совместно с тяжелыми и порядочными металлами, серой и теллуром. Для его извлечения шламы фильтруют, после этого нагревают с концентрированной серной кислотой либо подвергают окислительному обжигу при температуре 700°С.
9. Селен применяется при производстве выпрямительных полупроводниковых диодов и иной преобразовательной техники. В металлургии с его поддержкой придают стали мелкозернистую конструкцию, а также улучшают ее механические свойства . В химической промышленности селен используется в качестве катализатора.
Видео по теме
Обратите внимание!
Будьте внимательны при определении металлов и неметаллов. Для этого традиционно в таблице даны обозначения.
Первый камень преткновения изучающих химию. Большой ошибкой является подход, когда учащийся не пытается понять валентность, ожидая, что знания об этом потом приложатся сами собой. Но этот подход неверный, так как без понимания этого мы упираемся в тупик неспособности составить даже простейшую формулу.
Что такое «валентность» элементов?
Валентность - слово взятое учеными из латинского языка , что в переводе значит сила и возможность. Конечно, название неслучайно и может нам очень помочь в понимании сути термина. Ведь валентность характеризует атом с точки зрения его способности образовывать связи с другими атомами. Говоря иначе, валентность можно рассматривать, как возможность атома образовывать связи, благодаря которым появляются молекулы.
Обозначают валентность элемента всегда только римскими цифрами. Посмотреть ее значение для разных атомов можно в специальной таблице.
Какие бывают характеристики у валентности элементов?
Все вещества, которые обладают валентностью, характеризуются тем, что она у них или постоянна (во всех связях), либо переменная. Постоянная валентность - характеристика очень небольшой группы веществ (водорода, фтора, натрия, калия, кислорода и др. Намного больше в мире атомов, которые обладают переменной валентностью. В разных реакциях, взаимодействуя с разными атомами, они становятся разновалентными. Например, азот в соединении NH3 имеет валентность - III, так как связан с тремя атомами, а в природе он бывает с валентность от одного до четырех. Еще раз повторю, что разная валентность - более распространенное явление.
Влияние валентности элементов в химических реакциях.
Даже того как ученые узнали, что атом — это не мельчайшая частица в мире, они уже оперировали этим понятием. Они понимали, что есть внутренний фактор , который влияет на протекание химической реакции различных веществ . Из-за того, что ученые по-разному видели строение молекулы, понятие « валентность элемента » пережило несколько метаморфоз.
Валентность вещества определяется количеством внешних электронов атома. Каким количеством электронов атом обладает, столько максимально соединений он способен совершить. Таким образом «валентность» подразумевает собою число электронных пар атомов.
Хотя электронная теория появилась намного позже, после «разделения» атома на более мелкие частицы, до этого ученые все равно вполне успешно определяли валентность в большинстве случаев. Удавалось им это благодаря химическому анализу веществ.
Это была тяжелая работа: прежде всего, требовалось определить массу элемента в чистом виде. Далее, с помощью химического анализа, ученые определяли каков состав соединения, и только потом могли высчитать, сколько атомов содержит в себе молекула вещества.
Этот метод все еще используется, но не является универсальным. Так удобно определять элемент в простом соединении веществ. Например, с одновалентным водородом, или двухвалентным кислородом.
Но уже при работе с кислотами метод не особо удачный. Нет, мы можем частично использовать его, например, при определении валентности соединений кислотных остатков.
Выглядит это так: используя знание, что валентность кислорода всегда равна двум, мы можем с легкостью высчитать валентность всего кислотного остатка. Например, в H 2 SO 3 валентность SO 3 - I, в HСlO 3 валентность СlO 3 - I.
Валентность элементов в формулах.
Как мы уже говорили выше, понятие « валентность элементов » связанно с электронной структурой атома. Но это не единственный вид связи, которые существуют в природе. Химики знакомы еще с ионными, кристаллическими и другими формами структуры вещества. Для таких структур валентность уже не столь актуальна, но вот работая с формулами молекулярных реакций, мы обязательно должны ее учитывать.
Для того, чтоб сделать формулу мы должны расставить все индексы, которые уравновешивают количество атомов, вступающие в реакцию. Только зная валентность веществ, мы можем правильно расставить индексы. И наоборот, зная молекулярную формулу и имея индексы, можно узнать валентность элементов, что входят в состав вещества.
Для произведения подобных расчетов важно помнить, что валентности обоих элементов, вступивших в реакцию, будут равны, а значит, для поиска необходимо найти наименьшее общее кратное.
Например, возьмем, оксид железа. В химической связи у нас участвуют железо и кислород. В данной реакции у железа валентность равна III, а кислорода - II. Путем легких вычислений определяем, что наименьшее общее кратное - 6. А значит формула имеет вид Fe 2 O 3 .
Необычные способы определения валентности элементов.
Есть и более нестандартные, но интересные способы определения валентности вещества. Если хорошо знать свойства элемента, то определить валентность можно даже визуально. Например, медь. Ее оксиды будут красными и черными, а гидроксиды - желтыми и синими.
Наглядность.
Для того, чтоб валентность элемента была более понятна рекомендуют писать структурные формулы . Создавая их, мы пишем условные обозначения атомов, а потом рисуем черточки, опираясь на валентность. Там каждая черточка обозначает связи каждого из элементов и получается очень наглядно.