Остаточное среднее квадратическое отклонение. Среднее линейное отклонение
$X$. Для начала напомним следующее определение:
Определение 1
Генеральная совокупность -- совокупность случайно отобранных объектов данного вида, над которыми проводят наблюдения с целью получения конкретных значений случайной величины , проводимых в неизменных условиях при изучении одной случайной величины данного вида.
Определение 2
Генеральная дисперсия -- среднее арифметическое квадратов отклонений значений вариант генеральной совокупности от их среднего значения.
Пусть значения вариант $x_1,\ x_2,\dots ,x_k$ имеют, соответственно, частоты $n_1,\ n_2,\dots ,n_k$. Тогда генеральная дисперсия вычисляется по формуле:
Рассмотрим частный случай . Пусть все варианты $x_1,\ x_2,\dots ,x_k$ различны. В этом случае $n_1,\ n_2,\dots ,n_k=1$. Получаем, что в этом случае генеральная дисперсия вычисляется по формуле:
С этим понятием также связано понятие генерального среднего квадратического отклонения.
Определение 3
Генеральное среднее квадратическое отклонение
\[{\sigma }_г=\sqrt{D_г}\]
Выборочная дисперсия
Пусть нам дана выборочная совокупность относительно случайной величины $X$. Для начала напомним следующее определение:
Определение 4
Выборочная совокупность -- часть отобранных объектов из генеральной совокупности.
Определение 5
Выборочная дисперсия -- среднее арифметическое значений вариант выборочной совокупности.
Пусть значения вариант $x_1,\ x_2,\dots ,x_k$ имеют, соответственно, частоты $n_1,\ n_2,\dots ,n_k$. Тогда выборочная дисперсия вычисляется по формуле:
Рассмотрим частный случай. Пусть все варианты $x_1,\ x_2,\dots ,x_k$ различны. В этом случае $n_1,\ n_2,\dots ,n_k=1$. Получаем, что в этом случае выборочная дисперсия вычисляется по формуле:
С этим понятием также связано понятие выборочного среднего квадратического отклонения.
Определение 6
Выборочное среднее квадратическое отклонение -- квадратный корень из генеральной дисперсии:
\[{\sigma }_в=\sqrt{D_в}\]
Исправленная дисперсия
Для нахождения исправленной дисперсии $S^2$ необходимо умножить выборочную дисперсию на дробь $\frac{n}{n-1}$, то есть
С этим понятием также связано понятие исправленного среднего квадратического отклонения, которое находится по формуле:
В случае, когда значение вариант не являются дискретными, а представляют из себя интервалы, то в формулах для вычисления генеральной или выборочной дисперсий за значение $x_i$ принимается значение середины интервала, которому принадлежит $x_i.$
Пример задачи на нахождение дисперсии и среднего квадратического отклонения
Пример 1
Выборочная совокупность задана следующей таблицей распределения:
Рисунок 1.
Найдем для нее выборочную дисперсию, выборочное среднее квадратическое отклонение, исправленную дисперсию и исправленное среднее квадратическое отклонение.
Для решения этой задачи для начала сделаем расчетную таблицу:
Рисунок 2.
Величина $\overline{x_в}$ (среднее выборочное) в таблице находится по формуле:
\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}\]
\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}=\frac{305}{20}=15,25\]
Найдем выборочную дисперсию по формуле:
Выборочное среднее квадратическое отклонение:
\[{\sigma }_в=\sqrt{D_в}\approx 5,12\]
Исправленная дисперсия:
\[{S^2=\frac{n}{n-1}D}_в=\frac{20}{19}\cdot 26,1875\approx 27,57\]
Исправленное среднее квадратическое отклонение.
Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины: станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.
Энциклопедичный YouTube
-
1 / 5
Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины .
Среднеквадратическое отклонение:
s = n n − 1 σ 2 = 1 n − 1 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s={\sqrt {{\frac {n}{n-1}}\sigma ^{2}}}={\sqrt {{\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}};}- Примечание: Очень часто встречаются разночтения в названиях СКО (Среднеквадратического отклонения) и СТО (Стандартного отклонения) с их формулами. Например, в модуле numPy языка программирования Python функция std() описывается как "standart deviation", в то время как формула отражает СКО (деление на корень из выборки). В Excel же функция СТАНДОТКЛОН() другая (деление на корень из n-1).
Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии) s {\displaystyle s} :
σ = 1 n ∑ i = 1 n (x i − x ¯) 2 . {\displaystyle \sigma ={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.}где σ 2 {\displaystyle \sigma ^{2}} - дисперсия ; x i {\displaystyle x_{i}} - i -й элемент выборки; n {\displaystyle n} - объём выборки; - среднее арифметическое выборки:
x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + … + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}).}Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной .
В соответствии с ГОСТ Р 8.736-2011 среднеквадратическое отклонение считается по второй формуле данного раздела. Пожалуйста, сверьте результаты.
Правило трёх сигм
Правило трёх сигм ( 3 σ {\displaystyle 3\sigma } ) - практически все значения нормально распределённой случайной величины лежат в интервале (x ¯ − 3 σ ; x ¯ + 3 σ) {\displaystyle \left({\bar {x}}-3\sigma ;{\bar {x}}+3\sigma \right)} . Более строго - приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина x ¯ {\displaystyle {\bar {x}}} истинная, а не полученная в результате обработки выборки).
Если же истинная величина x ¯ {\displaystyle {\bar {x}}} неизвестна, то следует пользоваться не σ {\displaystyle \sigma } , а s . Таким образом, правило трёх сигм преобразуется в правило трёх s .
Интерпретация величины среднеквадратического отклонения
Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.
Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.
В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить. отождествляется с риском портфеля.
Климат
Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.
Спорт
Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой , но слабым нападением.
Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.
Дисперсия. Среднее квадратическое отклонение
Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. В зависимости от исходных данных дисперсия может быть невзвешенной (простой) или взвешенной.
Дисперсия рассчитывается по следующим формулам:
· для несгруппированных данных
· для сгруппированных данных
Порядок расчета дисперсии взвешенную:
1. определяют среднюю арифметическую взвешенную
2. определяются отклонения вариант от средней
3. возводят в квадрат отклонение каждой варианты от средней
4. умножают квадраты отклонений на веса (частоты)
5. суммируют полученные произведения
6. полученную сумму делят на сумму весов
Формула для определения дисперсии может быть преобразована в следующую формулу:
- простая
Порядок расчета дисперсии простой:
1. определяют среднюю арифметическую
2. возводят в квадрат среднюю арифметическую
3. возводят в квадрат каждую варианту ряда
4. находим сумму квадратов вариант
5. делят сумму квадратов вариант на их число, т.е. определяют средний квадрат
6. определяют разность между средним квадратом признака и квадратом средней
Также формула для определения дисперсии взвешенной может быть преобразована в следующую формулу:
т.е. дисперсия равна разности средней из квадратов значений признака и квадрата средней арифметической. При пользовании преобразованной формулой исключается дополнительная процедура по расчету отклонений индивидуальных значений признака от х и исключается ошибка в расчете, связанная с округлением отклонений
Дисперсия обладает рядом свойств, некоторые из них позволяют упростить ее вычисления:
1) дисперсия постоянной величины равна нулю;
2) если все варианты значений признака уменьшить на одно и то же число, то дисперсия не уменьшится;
3) если все варианты значений признака уменьшить в одно и то же число раз ( раз), то дисперсия уменьшится в раз
Среднее квадратичное отклонение S - представляет собой корень квадратный из дисперсии:
· для несгруппированных данных:
;
· для вариационного ряда:
Размах вариации, среднее линейное и среднее квадратичное отклонение являются величинами именованными. Они имеют те же единицы измерения, что и индивидуальные значения признака.
Дисперсия и среднее квадратическое отклонение наиболее широко применяемые показатели вариации. Объясняется это тем, что они входят в большинство теорем теории вероятности, служащей фундаментом математической статистики. Кроме того, дисперсия может быть разложена на составные элементы, позволяющие оценить влияние различных факторов, обусловливающих вариацию признака.
Расчет показателей вариации для банков, сгруппированных по размеру прибыли, показан в таблице.
Размер прибыли, млн. руб. Число банков расчетные показатели 3,7 - 4,6 (-) 4,15 8,30 -1,935 3,870 7,489 4,6 - 5,5 5,05 20,20 - 1,035 4,140 4,285 5,5 - 6,4 5,95 35,70 - 0,135 0,810 0,109 6,4 - 7,3 6,85 34,25 +0,765 3,825 2,926 7,3 - 8,2 7,75 23,25 +1,665 4,995 8,317 Итого: 121,70 17,640 23,126 Среднее линейное и среднее квадратичное отклонение показывают на сколько в среднем колеблется величина признака у единиц и исследуемой совокупности. Так, в данном случае средняя величина колеблености размера прибыли составляет: по среднему линейному отклонению 0,882 млн. руб.; по среднему квадратическому отклонению - 1,075 млн. руб. Среднее квадратическое отклонение всегда больше среднего линейного отклонения. Если распределение признака, близко к нормальному, то между S и d существует взаимосвязь: S=1,25d, или d=0,8S. Среднее квадратическое отклонение показывает как расположена основная масса единиц совокупности относительно средней арифметической. Независимо от формы распределения 75 значений признака попадают в интервал х 2S, а по крайне мере 89 всех значений попадают интервал х 3S (теорема П.Л.Чебышева).
Полученные из опыта величины неизбежно содержат погрешности, обусловленные самыми разнообразными причинами. Среди них следует различать погрешности систематические и случайные. Систематические ошибки обусловливаются причинами, действующими вполне определенным образом, и могут быть всегда устранены или достаточно точно учтены. Случайные ошибки вызываются весьма большим числом отдельных причин, не поддающихся точному учету и действующих в каждом отдельном измерении различным образом. Эти ошибки невозможно совершенно исключить; учесть же их можно только в среднем, для чего необходимо знать законы, которым подчиняются случайные ошибки.
Будем обозначать измеряемую величину через А, а случайную ошибку при измерении х. Так как ошибка х может принимать любые значения, то она является непрерывной случайной величиной, которая вполне характеризуется своим законом распределения.
Наиболее простым и достаточно точно отображающим действительность (в подавляющем большинстве случаев) является так называемый нормальный закон распределения ошибок :
Этот закон распределения может быть получен из различных теоретических предпосылок , в частности, из требования, чтобы наиболее вероятным значением неизвестной величины, для которой непосредственным измерением получен ряд значений с одинаковой степенью точности, являлось среднее арифметическое этих значений. Величина 2 называется дисперсией данного нормального закона.
Среднее арифметическое
Определение дисперсии по опытным данным. Если для какой-либо величины А непосредственным измерением получено n значений a i с одинаковой степенью точности и если ошибки величины А подчинены нормальному закону распределения, то наиболее вероятным значением А будет среднее арифметическое :
a - среднее арифметическое,
a i - измеренное значение на i-м шаге.Отклонение наблюдаемого значения (для каждого наблюдения) a i величины А от среднего арифметического : a i - a.
Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:
2 - дисперсия,
a - среднее арифметическое,
n - число измерений параметра,
Среднеквадратическое отклонение
Среднеквадратическое отклонение показывает абсолютное отклонение измеренных значений от среднеарифметического . В соответствии с формулой для меры точности линейной комбинации средняя квадратическая ошибка среднего арифметического определяется по формуле:
, где
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.Коэффициент вариации
Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического :
, где
V - коэффициент вариации,
- среднеквадратическое отклонение,
a - среднее арифметическое.Чем больше значение коэффициента вариации , тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.
Среднее линейное отклонение
Один из показателей размаха и интенсивности вариации - среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле:
, где
_
a - среднее линейное отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.Для проверки соответствия исследуемых значений закону нормального распределения применяют отношение показателя асимметрии к его ошибке и отношение показателя эксцесса к его ошибке.
Показатель асимметрии
Показатель асимметрии (A) и его ошибка (m a) рассчитывается по следующим формулам:
, где
А - показатель асимметрии,
- среднеквадратическое отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.Показатель эксцесса
Показатель эксцесса (E) и его ошибка (m e) рассчитывается по следующим формулам:
, где
Математическое ожидание и дисперсия
Пусть мы измеряем случайную величину N раз, например, десять раз измеряем скорость ветра и хотим найти среднее значение. Как связано среднее значение с функцией распределения?
Будем кидать игральный кубик большое количество раз. Количество очков, которое выпадет на кубике при каждом броске, является случайной величиной и может принимать любые натуральные значения от 1 до 6. Среднее арифметическое выпавших очков, подсчитанных за все броски кубика, тоже является случайной величиной, однако при больших N оно стремится ко вполне конкретному числу – математическому ожиданию M x . В данном случае M x = 3,5.
Каким образом получилась эта величина? Пусть в N испытаниях раз выпало 1 очко, раз – 2 очка и так далее. Тогда При N → ∞ количество исходов, в которых выпало одно очко, Аналогично, Отсюда
Модель 4.5. Игральные кости
Предположим теперь, что мы знаем закон распределения случайной величины x , то есть знаем, что случайная величина x может принимать значения x 1 , x 2 , ..., x k с вероятностями p 1 , p 2 , ..., p k .
Математическое ожидание M x случайной величины x равно:
Ответ. 2,8.
Математическое ожидание не всегда является разумной оценкой какой-нибудь случайной величины. Так, для оценки средней заработной платы разумнее использовать понятие медианы, то есть такой величины, что количество людей, получающих меньшую, чем медиана, зарплату и большую, совпадают.
Медианой случайной величины называют число x 1/2 такое, что p ( x < x 1/2) = 1/2.
Другими словами, вероятность p 1 того, что случайная величина x окажется меньшей x 1/2 , и вероятность p 2 того, что случайная величина x окажется большей x 1/2 , одинаковы и равны 1/2. Медиана определяется однозначно не для всех распределений.
Вернёмся к случайной величине x , которая может принимать значения x 1 , x 2 , ..., x k с вероятностями p 1 , p 2 , ..., p k .
Дисперсией случайной величины x называется среднее значение квадрата отклонения случайной величины от её математического ожидания:
Пример 2
В условиях предыдущего примера вычислить дисперсию и среднеквадратическое отклонение случайной величины x .
Ответ. 0,16, 0,4.
Модель 4.6. Стрельба в мишень
Пример 3
Найти распределение вероятности числа очков, выпавших на кубике с первого броска, медиану, математическое ожидание, дисперсию и среднеквадратичное отклонение .
Выпадение любой грани равновероятно, так что распределение будет выглядеть так:
Среднеквадратичное отклонение Видно, что отклонение величины от среднего значения очень велико.
Свойства математического ожидания:
- Математическое ожидание суммы независимых случайных величин равно сумме их математических ожиданий :
Пример 4
Найти математическое ожидание суммы и произведения очков, выпавшей на двух кубиках.
В примере 3 мы нашли, что для одного кубика M ( x ) = 3,5. Значит, для двух кубиков
Свойства дисперсии:
- Дисперсия суммы независимых случайных величин равно сумме дисперсий:
D x + y = D x + D y .
Пусть за N бросков на кубике выпало y очков. Тогда
Этот результат верен не только для бросков кубика. Он во многих случаях определяет точность измерения математического ожидания опытным путем . Видно, что при увеличении количества измерений N разброс значений вокруг среднего, то есть среднеквадратичное отклонение, уменьшается пропорционально
Дисперсия случайной величины связана с математическим ожиданием квадрата этой случайной величины следующим соотношением:
Найдём математические ожидания обеих частей этого равенства. По определению,
Математическое же ожидание правой части равенства по свойству математических ожиданий равно
Среднее квадратическое отклонение
Среднеквадратическое отклонение равно квадратному корню из дисперсии:
При определении среднего квадратического отклонения при достаточно большом объеме изучаемой совокупности (n > 30) применяются формулы:
Похожая информация.
просмотров