Математическое ожидание константы. Математическое ожидание – это распределение вероятностей случайной величины
Средние значения случайных величин
Предположим, что
Х
– дискретная случайная величина, которая в результате эксперимента принимала значения
x
1 ,
x
2 ,…,
x n
с вероятностями
p
1 ,
p
2 ,…,
p n
, . Тогда средним значением или математическим ожиданием величины
X
называется сумма
, т.е. средневзвешенное значение величины Х, где весами служат вероятности
p i
.
Пример . Определить среднее значение ошибки регулирования e, если на основании большого числа опытов установлено, что вероятность ошибки р i равна:
e, % | 0,1 | 0,15 | 0,2 | 0,25 | 0,3 |
р i | 0,2 | 0,2 | 0,3 | 0,15 | 0,15 |
1. M [e] = 0,1×0,2 + 0,15×0,2 + 0,2×0,3 + 0,25×0,15 + 0,3×0,15 =
В том случае, если g( Х ) является функцией X (причем вероятность того, что X = x i равна p i ), то среднее значение функции определяется как
Предположим, что X – случайная величина с непрерывным распределением и характеризуется плотностью вероятности j( x ). Тогда вероятность того, что X заключена между x и x + D х :
Величина X при этом приближенно принимает значение x . В пределе при D x ® 0, можно предположить, что приращение D x численно равно дифференциалу d x .
Произведя замену D
x
= d
х
, получаем точную формулу для расчета среднего значения
Х
:
Аналогично для g(
Х
):
Как правило, недостаточно бывает знать только среднее значение (математическое ожидание) случайной величины. Для оценки меры случайности величины (для оценки разброса конкретных значений X относительно математического ожидания M [ X ]) вводится понятие дисперсии случайной величины. Дисперсия – среднее значение квадрата отклонения каждого конкретного значения X от математического ожидания. Чем больше дисперсия , тем больше случайности разброса величины от математического ожидания. Если случайная величина дискретная, то
Для непрерывной случайной величины дисперсию можно записать аналогично:
Дисперсия хорошо описывает разброс величины, но при этом есть один недостаток: размерность не соответствует размерности X . Чтобы избавиться от этого недостатка, часто в конкретных приложениях рассматривают не , а положительное значение , которое называется средним квадратическим отклонением .
1.3.2.1. Свойства математического ожидания
1. Математическое ожидание неслучайной величины равно самой этой величине M [ C ] = C .
2. Неслучайный множитель С можно выносить за знак математического ожидания M [ CX ] = CM [ X ].
3. Математическое ожидание суммы случайных величин равно сумме математических ожиданий этих случайных величин.
4. Математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий этих величин (условие независимости случайных величин).
1.3.2.2. Свойства дисперсии
1. Дисперсия неслучайной величины С равна нулю: D [ C ]=0.
2. Дисперсия произведения неслучайного множителя С на случайную величину равна произведению С 2 на дисперсию случайной величины.
3. Дисперсия суммы независимых случайных величин X 1 и X 2 равна сумме дисперсий слагаемых
1.3.3. Моменты случайной величины
Пусть Х – непрерывная случайная величина. Если n – целое положительное число, а функция x n интегрируема на интервале (–¥; +¥), то среднее значение
n = 0, 1,…,
n
называется начальным моментом порядка n случайной величины X .
Очевидно, что момент нулевого порядка
,
Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.
Вспомним основы
Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.
Итак, происходит некоторое случайное событие , некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.
Среднее арифметическое
Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.
Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.
Дисперсия
Говоря научным языком , дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.
У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.
Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.
Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?
Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.
Зависимость от количества экспериментов
Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?
Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.
Задача
Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.
Математическое ожидание
Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи , сколько бы исходов в ней не рассматривалось.
Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.
Ещё один пример
Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.
Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы : 50/10 = 5.
Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.
Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.
Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.
Отклонение
Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.
Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения , это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды ( центрального значения ), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.
Программное обеспечение
Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.
Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.
В заключение
Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.
Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.
Оказывается, что целый ряд практических задач можно решить с помощью немногих характеристик распределения, а знание точной функции распределения случайной величины оказывается необязательным. К таким определяющим характеристикам случайной величины относятся, например, ее среднее и среднее квадратичное значения, а также среднее квадратичное отклонение.
Находить средние значения случайных величин можно из опыта, а также зная функции распределения случайных величин. Рассмотрим, как находить эти средние значения в различных случаях.
Пусть случайная величина может принимать: значения с вероятностью или это значение выпадает раз из
значение с вероятностью или это значение выпадает раз из наконец,
значение с вероятностью или это значение выпадает раз из
Тогда сумма значений случайной величины при испытаниях будет:
Чтобы найти среднее значение случайной величины т. е. значение, приходящееся на одно испытание, нужно сумму разделить на полное число испытаний:
Если мы имеем некоторую среднюю величину найденную по формуле (2.11), то, вообще говоря, при различных значениях полного числа испытаний значения средней величины также будут различными, так как рассматриваемые величины носят случайный характер. Однако при увеличении числа среднее значение данной величины будет стремиться к определенному пределу а. И чем больше будет число испытаний, тем ближе определенное по формуле (2.11), будет приближаться к этому предельному значению:
Последнее равенство представляет собой так называемый закон больших чисел или теорему Чебышева: среднее значение случайной величины будет стремиться к постоянному числу при очень большом числе измерений.
Итак, среднее значение случайной величины равна сумме произведений случайной величины на вероятность ее появления.
Если случайная величина меняется непрерывно, то ее среднее значение можно найти с помощью интегрирования:
Средние величины обладают рядом важных свойств:
1) среднее значение постоянной величины равно самой постоянной величине т. е.
2) среднее значение некоторой случайной величины есть величина постоянная, т. е.
3) среднее значение суммы нескольких случайных величин равно сумме средних значений этих величин, т. е.
4) среднее значение произведения двух взаимно независимых случайных величин равно произведению средних значений каждой из них, т. е.
Распространяя это правило на большее число независимых величин, имеем:
Иногда по тем или иным причинам знание среднего значения случайной величины оказывается недостаточным. В таких случаях ищется не просто среднее значение случайной величины, а среднее значение квадрата этой величины (квадратичное). При этом имеют место аналогичные формулы:
для дискретных значений и
в случае непрерывного изменения случайной величины.
Среднее квадратичное значение случайной величины оказывается всегда положительным и не обращается в нуль.
Часто приходится интересоваться не только средними значениями самой случайной величины, но и с редними значениями некоторых функций от случайной величины.
Например, имея распределение молекул по скоростям, мы можем найти среднюю скорость. Но также нас может интересовать средняя кинетическая энергия теплового движения, являющаяся квадратичной функцией скорости. В таких случаях можно воспользоваться следующими общими формулами, определяющими среднее значение произвольной функции случайной величины для случая дискретного распределения
для случая непрерывного распределения
Для нахождения средних значений случайной величины или функции от случайной величины с помощью ненормированной функции распределения пользуются формулами:
Здесь везде интегрирование производится по всей области возможных значений случайной величины
Отклонение от средних. В ряде случаев знание среднего и среднего квадратичного значения случайной величины оказывается недостаточным для характеристики случайной величины. Интерес представляет также распределение случайной величины около своего среднего значения. Для этого исследуется отклонение случайной величины от среднего значения.
Однако, если мы возьмем среднее отклонение случайной величины от ее среднего значения т. е. среднее значение чисел:
то получим, как в случае дискретного, так и в случае непрерывного распределения, нуль. Действительно,
Иногда можно находить среднее значение модулей отклонений случайной величины от среднего значения, т. е. величину:
Однако вычисления с абсолютными значениями часто сложны, а иногда и невозможны.
Поэтому гораздо чаще для характеристики распределения случайной величины около своего среднего значения используют так называемое среднее квадратичное отклонение или средний квадрат отклонения. Средний квадрат отклонения иначе называют дисперсией случайной величины. Дисперсия определяется по формулам:
которые преобразуются к одному виду (см. задачи 5, 9).
где величина представляет квадрат отклонения случайной величины от ее среднего значения.
Квадратный корень из дисперсии случайной величины называется средним квадратичным отклонением случайной величины, а для физических величин - флуктуацией:
Иногда вводится относительная флуктуация, определяемая по формуле
Таким образом, зная закон распределения случайной величины, можно определить все интересующие нас характеристики случайной величины: среднее значение, среднее квадратичное, среднее значение произвольной функции от случайной величины, средний квадрат отклонения или дисперсию и флуктуацию случайной величины.
Поэтому одной из основных задач статистической физики является отыскание законов и функций распределения тех или иных физических случайных величин и параметров в различных физических системах.
Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.
Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .
Свойства математического ожидания случайной величины
- Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
- M=C M[X]
- Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
- Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.
Свойства дисперсии
- Дисперсия постоянной величины равна нулю: D(c)=0.
- Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
- Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
- Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
-
Для дисперсии справедлива вычислительная формула:
D(X)=M(X 2)-(M(X)) 2
Пример
. Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345
Алгоритм вычисления математического ожидания
Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.- Поочередно умножаем пары: x i на p i .
-
Складываем произведение каждой пары x i p i .
Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Пример №1 .
x i | 1 | 3 | 4 | 7 | 9 |
p i | 0.1 | 0.2 | 0.1 | 0.3 | 0.3 |
Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78
Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:
Х | -10 | -5 | 0 | 5 | 10 |
р | а | 0,32 | 2 a | 0,41 | 0,03 |
Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08
Пример №3
. Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96
Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1
Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.
Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.
Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:
М ( Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)
Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.
Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.
Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.
Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.
Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда
Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:
Х | … | п | … | ||
р | 0,5 | (0,5) 2 | … | (0,5) п | … |
+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).
Свойства математического ожидания.
1) Математическое ожидание постоянной равно самой постоянной:
М ( С ) = С. (7.2)
Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М ( С ) = С ?1 = С .
2) Постоянный множитель можно выносит за знак математического ожидания:
М ( СХ ) = С М ( Х ). (7.3)
Доказательство. Если случайная величина Х задана рядом распределения
Тогда М ( СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ ( Х ).
Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .
Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.
3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:
M ( XY ) = M ( X ) M ( Y ). (7.4)
Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:
Следовательно, M ( XY ) = x 1 y 1 ? p 1 g 1 + x 2 y 1 ? p 2 g 1 + x 1 y 2 ? p 1 g 2 + x 2 y 2 ? p 2 g 2 = y 1 g 1 ( x 1 p 1 + x 2 p 2) + + y 2 g 2 ( x 1 p 1 + x 2 p 2) = ( y 1 g 1 + y 2 g 2) ( x 1 p 1 + x 2 p 2) = M ( X )? M ( Y ).
Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.
Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.
Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).
4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:
M ( X + Y ) = M ( X ) + M ( Y ). (7.5)
Доказательство.
Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М ( Х + Y ) = ( x 1 + y 1) p 11 + ( x 1 + y 2) p 12 + ( x 2 + y 1) p 21 + ( x 2 + y 2) p 22 =
= x 1 ( p 11 + p 12) + x 2 ( p 21 + p 22) + y 1 ( p 11 + p 21) + y 2 ( p 12 + p 22).
Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,
M ( X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M ( X ) + M ( Y ).
Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.
Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.
Найдем математическое ожидание числа очков, выпавших при броске одной кости:
М ( Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М ( Х )=
Дисперсия .
Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида
Х | |||
р | 0,1 | 0,8 | 0,1 |
Y | ||
p | 0,5 | 0,5 |
Найдем М ( Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М ( Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М ( Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М ( Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.
Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:
D ( X ) = M ( X - M ( X ))². (7.6)
Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:
(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,
Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.
Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.
Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:
Теорема 7.1. D ( X ) = M ( X ²) - M ²( X ). (7.7)
Доказательство.
Используя то, что М ( Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:
D ( X ) = M ( X - M ( X ))² = M ( X ² - 2 X?M ( X ) + M ²( X )) = M ( X ²) - 2 M ( X )? M ( X ) + M ²( X ) =
= M ( X ²) - 2 M ²( X ) + M ²( X ) = M ( X ²) - M ²( X ), что и требовалось доказать.
Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М ( Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.
М ( Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.
Свойства дисперсии.
1) Дисперсия постоянной величины С равна нулю:
D ( C ) = 0. (7.8)
Доказательство. D ( C ) = M (( C - M ( C ))²) = M (( C - C )²) = M (0) = 0.
2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:
D ( CX ) = C ² D ( X ). (7.9)
Доказательство. D ( CX ) = M (( CX - M ( CX ))²) = M (( CX - CM ( X ))²) = M ( C ²( X - M ( X ))²) =
= C ² D ( X ).
3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:
D ( X + Y ) = D ( X ) + D ( Y ). (7.10)
Доказательство. D ( X + Y ) = M ( X ² + 2 XY + Y ²) - ( M ( X ) + M ( Y ))² = M ( X ²) + 2 M ( X ) M ( Y ) +
+ M ( Y ²) - M ²( X ) - 2 M ( X ) M ( Y ) - M ²( Y ) = ( M ( X ²) - M ²( X )) + ( M ( Y ²) - M ²( Y )) = D ( X ) + D ( Y ).
Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.
Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.
4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:
D ( X - Y ) = D ( X ) + D ( Y ). (7.11)
Доказательство. D ( X - Y ) = D ( X ) + D (- Y ) = D ( X ) + (-1)² D ( Y ) = D ( X ) + D ( X ).
Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.
Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:
Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно