Классификация и обзор базовых методов прогнозирования. Инструментарий прогнозного анализа деятельности коммерческих организации
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ
ЗАПОРОЖСКИЙ ГОСУДАРСТВЕННЫЙЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
КАФЕДРА МЕЖДУНАРОДНЫХ ЭКОНОМИЧЕСКИХ ОТНОШЕНИЙ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
К КУРСОВОЙ РАБОТЕ ПО ДИСЦИПЛИНЕ «Международная информация»
Анализ методов прогнозирования
Разработал:
Руководитель:
Реферат
Пояснительная записка : 28 страниц, 7 рисунков, 1 формула, 9 источников
Объект исследования : методы прогнозирования.
Цель работы: изучить методы прогнозирования и провести их анализ
Методы исследования: дедукция, системно-структурный
Результаты исследования : в процессе работы был проведён анализ методов прогнозирования, были рассмотрены некоторые теоретические аспекты определённых методов, сфера применения методов прогнозирования, и на конкретном примере был представлен метод экстраполяции и тенденции.
Ключевые слова :прогнозирование, экстраполяция, экспертные методы, эвристика, информация, технология, обработка информации
Введение……………………………………………………………………………….6
1. Задачи и принципы прогнозирования………………………………………7
2. Методы научно-технического прогнозирования ………………………11
2.1 Классификация методов прогнозирования………..………………….11
2.2 Экстраполяционные методы прогнозирования……………………….13
2.2.1 Предварительная обработка исходной информации в задачах прогнозной экстраполяции………………………………………………………14
2.3 Статистические методы……………………………………………………16
2.4 Экспертные методы…………………………………………………………17
2.4.1 Область применения экспертных методов…………………………17
2.4.2 Метод эвристического прогнозирования (МЭП)…………………..19
3. Классификация экономических прогнозов……………………………..23
Вывод………………………………………………………………………………….28
Перечень ссылок……………………………………………………………………29
Перечень сокращений
ТЭО - таблица экспертных оценок
ПЭО - персональная экспертная оценка
МЭП - метод эвристического прогнозирования
ЭВМ - электронно-вычислительная машина
ЭЦВМ - электронная центральная вычислительная машина
МГД - магнитно-динамические установки
НТИ - научно-техническая информация
ВВЕДЕНИЕ
Процесс прогнозирования достаточно актуален в настоящее время. Широка сфера его применения. Прогнозирование широко используется в экономике, а именно в управлении. В менеджменте понятие «планирование» и «прогнозирование» тесно переплетены. Они не идентичны и не подменяют друг друга. Планы и прогнозы различаются между собой временными границами, степенью детализации содержащихся в них показателей, степенью точности и вероятности их достижения, адресностью и, наконец, правовой основой. Прогнозы, как правило, носят индикативный характер, а планы обладают силой директивного характера. Не подмена и противопоставление плана и прогноза, а их правильное сочетание - таков путь планомерного регулирования экономики в условиях рыночной экономики и перехода к ней.
В промышленности методы прогнозирования также играют первостепенную роль. Используя экстраполяцию и тенденцию, можно делать предварительные выводы относительно разных процессов, явлений, реакций, операций.
Определённую нишу прогнозирование занимает и в военных дисциплинах. Используя методы прогнозирования, можно определить(оценить) радиоактивную обстановку местности и т. д.
Существует много методов прогнозирования. Продифференцировав их общее число, необходимо выбрать оптимальный из них для использования в каждой конкретной ситуации.
Анализ методов прогнозирования, изучение этих методов, использование их в разных сферах деятельности является мероприятием рационализаторского характера. Степень достоверности прогнозов можно затем сравнить с действительно реальными показателями, и, сделав выводы, приступить к следующему прогнозу уже с существующими данными, т.е. имеющейся тенденцией. Опираясь на полученные данные, можно во временном аспекте переходить на более высокую ступень и т.д.
1. Задачи и принципы прогнозирования
Прогноз - конкретное предсказание, суждение о состоянии какого-либо явления в будущем на основе специально научного исследования . Классификация прогнозов осуществляется, как правило, по двум признакам- временному и функциональному. По временному признаку различают прогнозы: кратко-, средне-, долгосрочные и сверхдолгосрочные. Функциональная классификация прогнозов предполагает их деление на исследовательские, программные и ресурсные.
Прогнозирование - процесс разработки прогнозов. В зависимости от вида прогноза различают нормативное, поисковое, оперативное.
Прогнозная модель - модель объекта прогнозирования, исследование которой позволяет получить информацию о возможных состояниях объектах в будущем и (или) путях и сроках их осуществления
Чтобы получить информацию о будущем, нужно изучить зако-ны развития народного хозяйства, определить причины, движущие силы его развития - это основная задача планирования и прогно-зирования. В качестве основных движущих сил развития произ-водства выступают социальные потребности, технические воз-можности и экономическая целесообразность. В соответствии с этим можно указать на три основные задачи планирования и прогнозирования: установление целей развития хозяйства; изыскание оптимальных путей и средств их достижения; опреде-ление ресурсов, необходимых для достижения поставленных целей.
Выбор целей является результатом анализа социально-полити-ческих задач, которые необходимо решить в обществе и которые отображают объективный характер действия экономических законов.
Выбору целей предшествует разработка альтер-натив целей, построение иерархической системы или «дерева целей», ранжирование целей, выбор ведущих звеньев. Исходными предпосылками выбора целей являются, с одной стороны, реаль-ная возможность решения данной альтернативы, а с другой - ее оптимальность по критерию эффективности.
Пути и средства достижения целей определяются на основе анализа развития народного хозяйства и научно-технического про-гресса. При этом в. процессе прогнозирования происходит ограни-чение области альтернативных вариантов путей и средств дости-жения поставленных целей, т. е. определяется область оптималь-ных решений. В процессе разработки плана (принятия решения) определяется единственное решение, оптимальное по принятому вектору критериев.
В зависимости от того, какая задача решается в первую оче-редь, различают два вида прогнозирования: исследовательское (или поисковое) и нормативное. Формирование прогноза объек-тивно существующих тенденций развития на основе анализа исторических тенденций называется исследовательским или поисковым прогнозированием. Этот вид прогнозирования основан на использовании принципа инерционности развития, при кото-ром ориентация прогноза во времени происходит по схеме «от настоящего -- к будущему». Исследовательский прогноз -- это картина состояния объекта прогноза в определенный момент будущего, полученная в результате рассмотрения процесса разви-тия как движения по инерции от настоящего времени до горизон-та прогноза. Прогнозирование тенденций развития объекта про-гноза, которые должны обеспечивать достижение в установленный момент будущего определенных социально-политических, эконо-мических и оборонных целей, называется нормативным. В этом случае ориентация прогноза во времени происходит по схеме «от будущего -- к настоящему».
Рассогласование нормативных и исследовательских оценок объекта прогноза в каждый момент времени будущего является следствием противоречия «потребности--возможности». Комп-лексный прогноз строится на основе композиции исследователь-ского и нормативного прогнозов.
Выбор целей и средств для их достижения непременно должен сочетаться с определением потребности в ресурсах. При опреде-лении этой потребности следует рассматривать плановые и про-гнозные матрицы ресурсов (финансовых, трудовых, материальных и энергетических), а также матрицы производственных мощно-стей и ресурсов времени. Оценке подлежат как потребные ресур-сы, так и вероятные ограничения на их величину в диапазоне времени упреждения плана или прогноза. Матрицы ресурсов про-гноза являются важнейшими исходными данными при составле-нии балансов народного хозяйства при перспективном планиро-вании.
Движущие силы развития не действуют изолированно, они взаимосвязаны и взаимообусловлены и могут быть представлены в виде связного треугольника графа:
Рисунок 1.1 Взаимосвязь движущих сил развития
Вершины этого «причинного, треугольника» идентифицируют движущие силы развития производства, его ребра -- обоюдные связи между ними. Поэтому задачи планирования и прогнозиро-вания нельзя рассматривать изолированно. В процессе прогнози-рования и разработки плана обязательно производится анализ взаимодействия целей, способов и технических средств их дости-жения, ресурсов, необходимых для их реализации, и определяют-ся по принятым критериям эффективности оптимальные пути раз-вития народного хозяйства.
Несмотря на общность задач, их постановка при прогнозиро-вании и планировании различна. При планировании действует следующая схема: «цель - директивная, пути и средства ее дости-жения - детерминированные, ресурсы--ограниченные». При про-гнозировании схема иная: «цели--теоретически достижимые, пути и средства их достижения - возможные, ресурсы - вероятные». Задачи прогнозирования отличаются широтой охвата. Задачи прогнозирования надо оценивать как гло-бальные. К ним можно отнести: анализ ситуации, определение уровней достоверности информации, определение степени вероятности, выработка текущих, средне- и долгосрочных прогнозов. Принципы прогнозирования: сочетание социаль-но-политических и хозяйственных целей; демократический цент-рализм; системность; непрерывность и обратная связь; пропор-циональность и оптимальность; реальность и объективность; выделение ведущего звена и т. д.
Прогнозирование должно носить системный характер. Необходимость системного подхода в прогнозировании вытекает из особенностей развития науки и техники, народного хозяйства в период научно-технической революции. Научно-техническая рево-люция привела к принципиальному изменению свойств, характе-ристик и структуры современной техники и народного хозяйства. Рост количества элементов, объектов различной природы, услож-нение связей между ними и поведения объекта во внешней среде привели к созданию больших технических и производственных (организационно-экономических) систем.
Современные машины обладают высокой конструктивно-функ-циональной сложностью, представляют собой технические комп-лексы, включающие огромное количество деталей, узлов, агрега-тов и готовых изделий, объединенных конечной функциональной целостностью. Конструктивно-функциональная сложность обуслов-ливает высокую материалоемкость, трудоемкость, энергоемкость и стоимость технических комплексов. Развитие техники привело к созданию сложных иерархических структурных построений - больших технических систем. Это свойство технических комплек-сов потребовало системного подхода к ее созданию, системного проектирования. В разрабатываемых технических комплексах кон-струкции отдельных входящих элементов должны быть подчинены общей цели, ради которой создается система, т. е. должна быть обеспечена единая стратегия поведения технической системы.
Создание больших технических систем вызвало в свою очередь появление больших организационно-экономических (производственных) систем, охватывающих множество предприятий, объ-единенных выпуском определенного технического комплекса. Возникает иерархия в структуре управления производственными предприятиями . Неуклонно нарастающие темпы развития науки и техники, создание современных организационно-экономических систем привели к лавинообразному росту информации и увеличе-нию степени нерегулярности ее поступления. Все это потребовало совершенствования методов планирования, создания системы планирования.
Важнейшими требованиями системного подхода являются комплексность прогнозов и планов и непрерывный характер про-цесса планирования.
Комплексный подход предусматривает составление прогнозов и планов во взаимосвязи как в пространстве (в отраслевом и тер-риториальном разрезе), так и во времени. Взаимосвязь в прост-ранстве означает установление рациональных отношений между отраслями народного хозяйства, экономическими районами , уста-новление оптимальных соотношений между темпами развития науки, техники и промышленного производства, сбалансирован-ность потребностей и ресурсов на всех уровнях иерархии.
Взаимосвязь прогнозов и планов во времени обеспечивается реализацией принципа непрерывности планирования. Корректировка планов и прогнозов должна носить дискретный характер с заранее установленными сроками (режим функциони-рования). Относительно частое изменение планов, обусловливаю-щее изменение производственных программ, может привести к дезорганизации работы отраслей и предприятий в силу слож-ности структуры производственных связей в народном хозяйстве , большой трудоемкости и материалоемкости процессов подготовки промышленного производства.
Чувствительность прогноза и планов к изменениям зависит от уровня иерархии, сроков упреждения и периодичности корректи-ровок. Чем ниже уровень, тем чувствительность выше, тем долж-ны быть короче периоды корректировки.
Важнейшим моментом внедрения и использования непрерыв-ных систем планирования является определение качестваработы таких систем и на основе этого нахождение оптимального режима функционирования.
Непрерывность планирования обеспечивается путем реализа-ции принципа обратной связи. Корректировка планов и прогнозов проводится на основании информации обратной связи, содержа-щей данные о результатах реализации планов, и прогнозов, уточнения потребностей, об изменении тенденции развития объек-та и внешней среды (социально-политического, научно-техниче-ского и экономического фона).
Различная степень неопределенности вырабатываемой инфор-мации о будущем влияет на характер применяемых методов, спо-собов и приемов прогнозирования и планирования. Если при разработке планов предпочтение отдается детерминированным методам, то при прогнозировании - стохастическим. При состав-лении планов преимущественное применение имеют регулярные методы, при прогнозировании -- эвристические.
Специфика стадий и этапов планирования влияет также на количество и уровень агрегирования плановых и прогнозных показателей, степень их детерминированности, соотношения директивных и расчетных показателей.
2 МЕТОДЫ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГНОЗИРОВАНИЯ
2.1 Классификация методов прогнозирования
Прежде всего приведем определение метода прогнозирования как способа теоретического и практического действия, направлен-ного.на разработку прогнозов. Это определение является доста-точно общим и позволяет понимать термин «метод прогнозирова-ния» весьма широко: от простейших экстраполяционных расчетов до сложных процедур многошаговых экспертных опросов.
Для изучения методического аппарата прогностики целесооб-разно с самого начала детализировать это широкое понятие. Далее будем различать простые методы прогнозирования и комплексные методы прогнозирования. При этом под простым методом прогнозирования будем понимать метод, неразложимый на еще более простые методы прогнозиро-вания, и соответственно под комплексным - метод, состоящий из взаимосвязанной совокупности нескольких простых.
В настоящее время наряду со значительным числом опубли-кованных методов прогнозирования известны многочисленные способы их классификации. Тем не менее считать этот вопрос удовлетворительно решенным нельзя, так как единой, полезной и полной классификации сейчас еще не создано. Вероятно, про-гностика, как молодая наука, еще не достигла такого уровня раз-вития, когда возможно создание классификации, удовлетворяю-щей всем этим требованиям. Итак, каковы же цели классификации методов прогностики? Можно указать две такие основные цели. Это, во-первых, обеспе-чение процесса изучения и анализа методов и, во-вторых, обслу-живание процесса выбора метода при разработке прогнозов объекта. На современном этапе трудно предложить единую клас-сификацию, в равной степени удовлетворяющую обеим из указан-ных целей.
Существуют два основных типа классификации: последова-тельная и параллельная. Последовательная классификация пред-полагает вычленение частных объемов из более общих. Это про-цесс, тождественный делению родового понятия на видовые. При этом должны соблюдаться следующие основные правила: 1) осно-вание деления (признак) должно оставаться одним и тем же при образовании любого видового понятия; 2) объемы видовых поня-тий должны исключать друг друга (требование отсутствия пере-сечения классов); 3) объемы видовых понятий должны исчерпы-вать объем родового понятия (требование полного охвата всех объектов классификации).
Параллельная классификация предполагает сложное инфор-мационное основание, состоящее не из одного, а из целого ряда признаков. Основной принцип такой классификации--независи-мость выбранных признаков, каждый из которых существен, все вместе одновременно присущи предмету и только их совокупность дает исчерпывающее представление о каждом классе.
Последовательная классификация имеет наглядную интерпре-тацию в виде некоторого генеалогического дерева, охватывает всю рассматриваемую область в целом и определяет место и взаимо-связи каждого класса в общей системе. Поэтому она является более приемлемой для целей изучения, позволяет методически более стройно представлять классифицируемую область знаний.
Каждый уровень классификации характеризуется своим клас-сификационным признаком. Элементы каждого уровня представ-ляют собой наименования принадлежащих им подмножеств элементов ближайшего нижнего уровня, причем подмножеств непересекающихся.
Элементы нижнего уровня представляют собой наименование узких групп конкретных методов прогнозирования (иногда из одного элемента), которые являются модификациями или разно-видностями какого-либо одного, наиболее общего из них.
В целом классификация является открытой, так как представ-ляет возможность увеличивать число элементов на уровнях и наращивать число уровней за счет дальнейшего дробления и уточнения элементов последнего уровня.
На первом уровне все методы делятся на три класса по при-знаку «информационное основание метода». Фактографические методы базируются на фактически имеющемся информационном материале об объекте прогнозирования и его прошлом развитии. Экспертные методы базируются на информации, которую постав-ляют специалисты-эксперты в процессе систематизированных про-цедур выявления и обобщения этого мнения. Комбинированные методы выделены в отдельный класс, чтобы можно было отно-сить к нему методы со смешанной информационной основой, в которых в качестве первичной информации используются фактографическая и экспертная. Например, при проведении экспертного опроса участникам представляют цифровую информацию об объекте или фактографические прогнозы, либо, наоборот, при экстраполяции тенденции наряду с фактическими данными используют экспертные оценки.
Не следует относить к комбинированным методам те методы прогнозирования, которые к экспертной исходной информации применяют математические методы обработки или исходную фак-тографическую информацию оценивают экспертным путем. В большинстве случаев они достаточно хорошо укладываются в первый или второй из перечисленных выше классов.
Эти классы разделяются далее на подклассы по принципам обработки информации. Статистические методы объединяют сово-купность методов обработки количественной информации об объекте прогнозирования по принципу выявления содержащихся в ней математических закономерностей развития и математиче-ских взаимосвязей характеристик с целью получения прогнозных моделей. Методы аналогий направлены на то, чтобы выявлять сходство в закономерностях развития различных процессов и на этом основании производить прогнозы. Опережающие методы про-гнозирования строятся на определенных принципах специальной обработки научно-технической информации, реализующих в про-гнозе ее свойство опережать развитие научно-технического про-гресса.
Экспертные методы разделяются на два подкласса. Прямые экспертные оценки строятся по принципу получения и обработки независимого обобщенного мнения коллектива экспертов (или одного из них) при отсутствии воздействий на мнение каждого эксперта мнения другого эксперта и мнения коллектива. Эксперт-ные оценки с обратной связью в том или ином виде воплощают принцип обратной связи путем воздействия на оценку экспертной группы (одного эксперта) мнением, полученным ранее от этой группы или от одного из ее экспертов.
Третий уровень классификации разделяет методы прогнозиро-вания на виды по классификационному признаку «аппарат мето-дов». Каждый вид объединяет в своем составе методы, имеющие в качестве основы одинаковый аппарат их реализации. Так, ста-тистические методы по видам делятся на методы экстраполяции и интерполяции; методы, использующие аппарат регрессионного и корреляционного анализа; методы, использующие факторный анализ.
Класс методов аналогий подразделяется на методы математи-ческих и исторических аналогий. Первые в качестве аналога для объекта прогнозирования используют объекты другой физической природы , другой области науки, отрасли техники, однако имею-щие математическое описание процесса развития, совпадающее с объектом прогнозирования. Вторые в качестве аналога исполь-зуют процессы одинаковой физической природы, опережающие во времени развитие объекта прогнозирования.
Опережающие методы прогнозирования можно разделить на методы исследования динамики научно-технической информации; методы исследования и оценки уровня техники. В первом случае в основном используется построение количественно-качественных динамических рядов на базе различных видов НТИ и анализа и прогнозирования на их основе соответствующего объекта. Вто-рой вид методов использует специальный аппарат анализа коли-чественной и качественной информации, содержащейся в НТИ, для определения характеристик уровня, качества существующей и про-ектируемой техники.
Прямые экспертные оценки по признаку аппарата реализации делятся на виды экспертного опроса и экспертного анализа. В первом случае используются специальные процедуры формиро-вания вопросов, организации получения на них ответов, обработ-ки полученных ответов и формирования окончательного резуль-тата. Во втором -- основным аппаратом исследования является целенаправленный анализ объекта прогнозирования со стороны эксперта или коллектива экспертов, которые сами ставят и реша-ют вопросы, ведущие к поставленной цели.
Экспертные оценки с обратной связью в своём аппарате име-ют три вида методов: экспертный опрос; генерацию идей; игровое моделирование. Первый вид характеризуется процедурами регла-ментированного неконтактного опроса экспертов перемежающими-ся обратными связями в рассмотренном выше смысле. Второй -- построен на процедурах непосредственного общения экспертов в процессе обмена мнениями по поставленной проблеме. Он характеризуется отсутствием вопросов и ответов и направлен на взаимное стимулирование творческой деятельности экспертов. Третий вид использует аппарат теории игр и ее прикладных раз-делов. Как правило, реализуется на сочетании динамического взаимодействия коллективов экспертов и вычислительной маши-ны, имитирующих объект прогнозирования в возможных будущих ситуациях.
Наконец, последний, четвертый, уровень классификации под-разделяет виды методов третьего уровня на отдельные методы и группы методов по некоторым локальным для каждого вида совокупностям классификационных признаков, из которых ука-зать один общий для всего уровня в целом невозможно.
2.2 Экстраполяционные методы прогнозирования
Методы экстраполяции тенденций являются, пожалуй, самыми распространенными и наиболее разработанными среди всей сово-купности методов прогнозирования. Использование экстраполяции в прогнозировании имеет в своей основе.предположение о том, что рассматриваемый процесс изменения переменной представля-ет собой сочетание двух составляющих--регулярной и случайной:
Считается, что регулярная составляющая f ( a , х) представляет собой гладкую функцию от аргумента (в большинстве случаев-- времени), описываемую конечномерным вектором параметров а, которые сохраняют свои значения на периоде упреждения про-гноза. Эта составляющая называется также трендом, уровнем, детерминированной основой процесса, тенденцией. Под всеми этими терминами лежит интуитивное представление о какой-то очищенной от помех сущности анализируемого процесса. Интуи-тивное, потому что для большинства экономических, технических, природных процессов нельзя однозначно отделить тренд от слу-чайной составляющей. Все зависит от того, какую цель пресле-дует это разделение и с какой точностью его осуществлять.
Случайная составляющая n (х) обычно считается некоррели-рованным случайным процессом с нулевым математическим ожи-данием. Ее оценки необходимы для дальнейшего определения точностных характеристик прогноза.
Экстраполяционные методы прогнозирования основной упор делают на выделение наилучшего в некотором смысле описания тренда и на определение прогнозных значений путем его экстра-поляции. Методы экстраполяции во многом пересекаются с мето-дами прогнозирования по регрессионным моделям. Иногда их различия сводятся лишь к различиям в терминологии, обозначе-ниях или написании формул. Тем не менее сама по себе прогнозная экстраполяция имеет ряд специфических черт и приемов, позво-ляющих причислять ее к некоторому самостоятельному виду методов прогнозирования.
Специфическими чертами прогнозной экстраполяции можно назвать методы предварительной обработки числового ряда с целью преобразования его к виду, удобному для прогнозирова-ния, а также анализ логики и физики прогнозируемого процесса, оказывающий существенное влияние как па выбор вида экстра-полирующей функции, так и на определение границ изменения ее параметров.
2.2.1 Предварительная обработка исходной информации в задачах прогнозной экстраполяции
Предварительная обработка исходного числового ряда направ-лена на решение следующих задач (всех или части из них): сни-зить влияние случайной составляющей в исходном числовом ряду, т. е. приблизить его к тренду; представить информацию, содержащуюся в числовом ряду, в таком виде, чтобы существенно снизить трудность математического описания тренда. Основными методами решения этих задач являются процедуры сглаживания и выравнивания статистического ряда.
Процедура сглаживания направлена на минимизацию случай-ных отклонений точек ряда от некоторой гладкой кривой пред-полагаемого тренда процесса. Наиболее распространен способ осреднения уровня по некоторой совокупности окружающих точек, причем эта операция перемещается вдоль ряда точек, в связи с чем обычно называется скользящая средняя. В самом простом варианте сглаживающая функция линейна и сглаживающая груп-па состоит из предыдущей и последующей точек, в более слож-ных -- функция нелинейна и использует группу произвольного числа точек.
Сглаживание производится с помощью многочленов, прибли-жающих по методу наименьших квадратов группы опытных точек. Наилучшее сглаживание получается для средних точек группы, поэтому желательно выбирать нечетное количество точек в сглаживаемой группе.
Сглаживание даже в простом линейном варианте является во многих случаях весьма эффективным средством выявления тренда при наложении на эмпирический числовой ряд случайных помех и ошибок измерения. Для рядов со значительной ампли-тудой помехи имеется возможность проводить многократное сгла-живание исходного числового ряда. Число последовательных циклов сглаживания должно выбираться в зависимости от вида исходного ряда, от степени предполагаемой его зашумленности помехой, от цели, которую преследует сглаживание. Надо иметь при этом в виду, что эффективность этой процедуры быстро уменьшается (в большинстве случаев), так что целесообразно повторять ее от одного до трех раз.
Линейное сглаживание является достаточно грубой процеду-рой, выявляющей общий приблизительный вид тренда. Для более точного определения формы сглаженной кривой может применять-ся операция нелинейного сглаживания или взвешенные скользящие средние. В этом случае ординатам точек, входящих в сколь-зящую группу, приписываются различные веса в зависимости от их расстояния от середины интервала сглаживания.
Если сглаживание направлено на первичную обработку число-вого ряда для исключения случайных колебаний и выявления тренда, то выравнивание служит целям более удобного представ-ления исходного ряда, оставляя прежними его значения.
Наиболее общими приемами выравнивания являются логариф-мирование и замена переменных.
В случае если эмпирическая формула предполагается содер-жащей три параметра либо известно, что функция трехпарамет-рическая, иногда удается путем некоторых преобразований иск-лючить один из параметров, а оставшиеся два привести к одной из формул выравнивания.
Можно рассматривать выравнивание не только как метод представления исходных данных, но и как метод непосредствен-ного приближенного определения параметров функции, аппрокси-мирующей исходный числовой ряд. Зачастую именно так и используется этот метод в некоторых экстраполяционных про-гнозах. Отметим, что возможность непосредственного его исполь-зования для определения параметров аппроксимирующей функ-ции определяется главным образом видом исходного числового ряда и степенью наших знаний, нашей уверенности относительно вида функции, описывающей исследуемый процесс.
В том случае, если вид функции нам неизвестен, выравнива-ние следует рассматривать как предварительную процедуру, в процессе которой путем применения различных формул и прие-мов выясняется наиболее подходящий вид функции, описывающей эмпирический ряд.
Одной из разновидностей метода выравнивания является исследование эмпирического ряда с целью выяснения некоторых свойств функции, описывающей его. При этом не обязательно преобразования приводят к линейным формам. Однако результа-ты их подготавливают и облегчают процесс выбора аппроксими-рующей функции в задачах прогностической экстраполяции. В простейшем случае предлагается использовать следующие три типа дифференциальных функций роста:
1) Первая производная, или абсолютная дифференциальная функция роста.
2) Относительный дифференциальный коэффициент, или лога-рифмическая производная,
3) Эластичность функции
2.3 Статистические методы
Прежде чем приступить к анализу статистических методов прогнозирования, рассмотрим некоторые общие понятия и опреде-ления, относящиеся к корреляционным и регрессионным моделям. Две случайные величины являются корреляционно связан-ными, если математическое ожидание одной из них меняется в зави-симости от изменения другой.
Применение корреляционного анализа предполагает выполне-ние следующих предпосылок:
а) Случайные величины y ( y 1 , у 2 , ..., У n ) и x ( x 1 , x 2 , ..., Х n ) могут рассматриваться как выборка из двумерной генеральной совокуп-ности с нормальным законом распределения.
б) Ожидаемая величина погрешности и равна нулю
в) Отдельные наблюдения стахостически независимы, т. е. зна-чение данного наблюдения не должно зависеть от значения преды-дущего и последующего наблюдений.
г) Ковариация между ошибкой, связанной с одним значением зависимой переменной у, и ошибкой, связанной с любым другим значением y , равна нулю.
д) Дисперсия ошибки, связанная с одним значением у, равна дисперсии ошибки, связанной с любым другим значением.
е) Ковариация между погрешностью и каждой из независимых переменных равна нулю.
ж) Непосредственная применимость этого метода ограничивается случаями, когда уравнение кривой является линейным относительно своих параметров b o , b i , ...,b k Это, однако, не означает, что само уравнение кривой относительно переменных должно быть линей-ным. Если эмпирические уравнения наблюдений не являются линейными, то во многих случаях оказывается возможным при-вести их к линейной форме и уже . после этого применять метод наименьших квадратов.
з) Наблюдения независимых переменных производятся без погрешности.
Перед началом корреляционного анализа необходимо проверить выполнение этих предпосылок.
Связь между случайной и неслучайной величинами называется регрессионной, а метод анализа таких связей -- регрессионным анализом. Применение регрессионного анализа предполагает обя-зательное выполнение предпосылок (б-г) корреляцион-ного анализа. Только при выполнении приведенных предпосылок оценки коэффициентов корреляции и регрессии, получаемые с помощью способа наименьших квадратов, будут несмещенными и иметь минимальную дисперсию.
Регрессионный анализ тесно связан с корреляционным. При выполнении предпосылок корреляционного анализа выполняются предпосылки регрессионного анализа. В то же время регрессионный анализ предъявляет менее жесткие требования к исходной инфор-мации.» Так, например, проведение регрессионного анализа воз-можно даже в случае отличия распределения случайной величины от нормального, как это часто бывает для технико-экономических величин. В качестве зависимой переменной в регрессионном ана-лизе используется случайная переменная, а в качестве независи-мой -- неслучайная переменная.
По степени комплексности статистические исследования можно разделить на двумерные и многомерные. Первые касаются рассмот-рения парных взаимосвязей между переменными (парные корре-ляции и регрессии) и направлены в прогнозных исследованиях на решение таких задач, как установление количественной меры тес-ноты связи между двумя случайными величинами, установление близости этой связи к линейной, оценки достоверности и точности прогнозов, полученных экстраполяцией регрессионной зависимо-сти. Многомерные методы статистического - анализа направлены в основном на решение задачи системного анализа многомерных стохастических объектов прогнозирования. Целью такого анализа является, как правило, выяснение внутренних взаимосвязей между переменными комплекса, построение многомерных функций связи переменных, выделение минимального числа характеристик, описы-вающих объект с достаточной степенью точности. Одной из основ-ных задач здесь является сокращение размерности описания объ-екта прогнозирования.
Таким образом, статистические методы используются в основ-ном для подготовки данных, приведения их к виду, пригодному для производства прогноза. Как правило, после их применения исполь-зуется один из методов экстраполяции или интерполяции для полу-чения непосредственно прогнозного результата.
2.4 Экспертные методы
2.4.1 Область применения экспертных методов
Методы экспертных оценок в прогнозировании и перспективном планировании научно-технического прогресса применяются в сле-дующих случаях:
а) в условиях отсутствия достаточно представительной и досто-верной статистики характеристики объекта (например, лазеры, голографические запоминающие устройства, рациональное исполь-зование водных ресурсов на предприятиях);
б) в условиях большой неопределенности среды функционирования объекта (например, прогнозов человеко-машинной системы в кос-мосе или учет взаимовлияния областей науки и техники);
в) при средне- и долгосрочном прогнозировании объектов новых отраслей промышленности, подверженных сильному влиянию новых открытий в фундаментальных науках (например, микробио-логическая промышленность, квантовая электроника, атомное машиностроение);
г) в условиях дефицита времени или экстремальных ситуациях.
Экспертная оценка необходима, когда нет надлежащей теоре-тической основы развития объекта. Степень достоверности экспер-тизы устанавливается по абсолютной частоте, с которой оценка эксперта в конечном итоге подтверждается последующими собы-тиями. Существует две категории экспертов - это узкие специали-сты и специалисты широкого профиля, обеспечивающие формули-рование крупных проблем и построение моделей. Выбор экспертов для прогноза производится на основе их репутации среди опреде-ленной категории специалистов. Однако не следует забывать и того обстоятельства, что первоклассный специалист не всегда может достаточно квалифицированно рассмотреть и понять общие, глобальные, вопросы. Для этой цели нужно привлекать экспертов хотя и недостаточно узко информированных, но обладающих спо-собностью к дерзанию и воображению.
«Эксперт» в дословном переводе с латинского языка означает «опытный». Поэтому и в формализованном, и в неформализован-ном способах определения эксперта значительное место занимают профессиональный опыт и развитая на его основе интуиция. Усло-вия необходимости и достаточности отнесения специалиста к кате-гории экспертов вводятся следующим образом.
Важно установить не абсолютную степень надежности эксперт-ной оценки, а степень надежности по сравнению с оценкой среднего специалиста, а также корреляцию между вероятностью его прогноз-ной оценки и надежностью класса тех гипотез, которыми оперирует эксперт. В общем, нужно определить, что такое эксперт. Перечис-лим некоторые требования, которым должен удовлетворять эксперт:
1) оценки эксперта должны быть стабильны во времени и транзи-тивны; 2) наличие дополнительной информации о прогнозируемых признаках лишь улучшает оценку эксперта; 3) эксперт должен быть признанным специалистом в данной области знаний; 4) эксперт должен обладать некоторым опытом успешных прогнозов в дан-ной области знаний.
Характеризуя экспертов, следует иметь в виду, что в результате выработки оценок могут иметь место ошибки двух видов. Ошибки первого вида известны в технике измерений как систематические, ошибки второго вида -- как случайные. Эксперт, склонный к ошиб-кам первого вида, выдает значения, которые устойчиво отличаются от истинного в сторону увеличения или уменьшения. Полагают, что ошибки этого вида связаны со складом ума экспертов. Для коррек-ции систематических ошибок можно применять поправочные коэф-фициенты или же использовать специально разработанные трени-ровочные игры. Ошибки второго вида характеризуются величиной дисперсии. Исходя из анализа основных видов ошибок при выне-сении экспертных суждений, можно добавить к рассмотренному ранее перечню требований к экспертам еще одно. Смысл его состоит в том, что следует предпочесть эксперта, оценки которого имеют малую дисперсию и систематическое отклонение средней ошибки от нуля, эксперту со средней ошибкой, равной нулю, но с большей дисперсией. К сожалению, априори определить способность человека делать правильные экспертные оценки невозможно. Важным средством подготовки экспертов являются специальные тренировочные игры.
Организация форм работы эксперта может быть программиро-ванной или непрограммированной, а деятельность эксперта может осуществляться в устной (интервью) либо в письменной форме (ответ на вопросы специальных таблиц экспертных оценок или сво-бодное изложение по заданной теме).
Программирование формы работы эксперта предполагает:
построение граф-модели объекта на базе ретроспективного ана-лиза; определение структуры таблиц экспертных оценок (ТЭО) или программы интервью на базе граф-модели объекта и целей экспер-тизы; определение типа и формы вопросов в ТЭО или в интервью;
определение типа шкалы для вопросов в ТЭО; учет психологиче-ских особенностей экспертизы при определении последовательности вопросов в ТЭО; учет верифицирующих вопросов; разработка логи-ческих приемов для последующего синтеза прогнозных оценок в комплексных прогнозах объекта.
Организация стимуляции работы эксперта состоит в разработке:
эвристических приемов и способов, облегчающих поиск прогнозной экспертной оценки; правовых норм, гарантирующих эксперту оформление приоритета и авторства, а также неразглашения всех научно-технических идей, выдвигаемых им в процессе экспертизы;
форм моральной, профессиональной и материальной заинтересо-ванности эксперта в экспертных оценках; организационных форм работы эксперта (включение в план работы и т. п.).
Исходя из полученной в результате анализа модели объекта прогнозирования, определяются научные и технические направле-ния, по которым необходимо привлечь эксперта, выделяются группы экспертов по принадлежности вопроса к области фунда-ментальных, прикладных наук или к стыковым научным направ-лениям.
При решении задачи формирования экспертной группы необхо-димо выявить и стабилизировать работоспособную сеть экспертов. Способ стабилизации экспертной сети заключается в следующем. На основе анализа литературы по прогнозируемой проблеме выби-рается любой специалист, имеющий несколько публикаций в дан-ной области. К нему обращаются с просьбой назвать 10 наиболее компетентных, по его мнению, специалистов по данной проблеме. Затем обращаются одновременно к каждому из десяти названных специалистов с просьбой указать 10 наиболее крупных их коллег-ученых. Из полученного списка специалистов вычеркиваются 10 первоначальных, а остальным рассылаются письма, содержащие указанную выше просьбу. Данную процедуру повторяют до тех пор, пока ни один из вновь названных специалистов не добавит новых фамилий к списку экспертов, т. е. пока не стабилизируется сеть экспертов. Полученную сеть экспертов можно считать генеральной совокупностью специалистов, компетентных в области прогнози-руемой проблемы. Однако в силу ряда практических ограничений оказывается нецелесообразным привлекать всех специалистов к экспертизе. Поэтому необходимо сформировать репрезентативную выборку из генеральной совокупности экспертов.
Определение специфики процедур для методов класса ПЭО (персональных экспертных оценок) осуществляется на основе ана-лиза требований к экспертам и их оценкам, вытекающим из сущно-сти методов:
а) аналитические записки предъявляют требования структуризации экспериментируемой проблемы, экспликации и ранжирования целей, анализа альтернативных путей достижения цели, оценки затрат на каждую альтернативу и рекомендаций по наиболее эффективным способам решения проблем;
б) парные сравнения, нормирование и ранжирование требуют одно-родности оцениваемых признаков, наличия логически обоснованных критериев и эталонов, наличие однозначно определенных процедур оперирования с критериями, эталонами и признаками;
в) интервью предъявляют специфические требования как к экспер-ту, так и к интервьюеру;
г) морфологическая структуризация требует четкого определения функциональных характеристик объекта или проблемы, которые необходимо улучшить, классификации научных принципов , на основе которых возможно улучшение характеристики; анализа все-возможных комбинаций этих принципов и отсева заведомо абсурдных; оценки комбинаций по степени осуществимости и затрат на их реализацию; сравнения комбинаций по комплексному критерию «затраты -- эффективность -- время».
2.4.2 Метод эвристического прогнозирования (МЭП)
Основная задача, стоящая перед специалистами по анализу и проектированию больших систем, в общем случае , как правило, заключается в нахождении наиболее оптимальных способов созда-ния более эффективных систем -- либо вновь проектируемых, либо модернизируемых. Сложность решения этой задачи состоит прежде всего в том, что здесь обычно нет возможности найти решение чисто математическими методами, поскольку, как правило, не удается точно определить величины (функционалы), подлежащие оптими-зации (экстремализации) в математическом смысле. Это связано не только со сложностью описания функционирования больших систем, но и с такими принципиальными видами, как, например, специфика целей, для достижения которых предназначена система. Во-первых, перед системой может стоять не одна цель, а набор их, что сразу же приводит к задаче векторной оптимизации. Во-вторых, набор целей, поставленных перед системой, может содержать в своем составе чисто качественные цели, не подлежащие практи-чески реализующимся количественным измерениям. Это приводит, с одной стороны, к проблеме оценки степени достижения качествен-ной цели и, с другой -- к проблеме соизмерения важности качест-венных и количественных целей и степени их достижения.
Аналогичная ситуация возникает и при оценке последствий предполагаемого способа достижения поставленной цели. Укажем для примера, что эти последствия могут одновременно носить эко-номический, политический, социальный или какой-либо другой характер.
В этих условиях решение системной задачи находится посред-ством эвристических приемов, использующих весьма сложный математический аппарат, и заключается в выдаче обоснованных рекомендаций, достаточных для выработки решения.
Методом эвристического прогнозирования называется метод получения и специализированной обработки прогнозных оценок объекта путем систематизированного опроса высококвалифициро-ванных специалистов (экспертов) в узкой области науки, техники или производства. Прогнозные экспертные оценки отражают индивидуальное суждение специалиста относительно перспектив развития его области и основаны на мобилизации профессиональ-ного опыта и интуиции.
Метод эвристического прогнозирования сходен с дельфийской техникой, коллективной генерацией идей и методом коллективной экспертной оценки в том смысле, что одним из элементов его является сбор и обработка суждений экспертов, высказанных на основе профессионального опыта и интуиции. Однако он отли-чается от указанных методов большей четкостью теоретических основ , способами формирования анкет и таблиц, порядком работы с экспертами и алгоритмом обработки полученной информации. Эвристическим данный метод назван в связи с однородностью форм мыслительной деятельности эксперта при решении научной проблемы и при оценке перспектив развития объекта прогнозиро-вания, а также в связи с использованием экспертами специфиче-ских приемов, приводящих к правдоподобным умозаключениям.
Назначение метода эвристического прогнозирования - выявле-ние объективизированного представления о перспективах развития узкой области науки и техники на основе систематизированной обработки прогнозных оценок репрезентативной группы экспертов.
Область применения МЭП -- научно-технические объекты и проблемы, развитие которых либо полностью, либо частично не поддается формализации, т. е. для которых трудно разрабаты-вать адекватную модель. Например, элементно-технологическая база ЭЦВМ.
В основе метода лежат три теоретических допущения: 1) сущест-вования у эксперта психологической установки на будущее, сфор-мулированной на основе профессионального опыта и интуиции, и возможности ее экстериоризации; 2) тождественности процесса эвристического прогнозирования и процесса решения научной проблемы с однотипностью получаемого знания в форме эвристи-ческих правдоподобных умозаключений, требующих верификации;
3) возможности адекватного отображения тенденции развития объекта прогнозирования в виде системы прогнозных моделей, синтезируемых из прогнозных экспертных оценок.
Эти допущения реализуются в методе эвристического прогнози-рования путем системы приемов работы с экспертами, способами оценок и синтеза прогнозных моделей.
В качестве исходных документов при работе по методу эвристи-ческого прогнозирования выступают: описание метода; инструкции по формулированию вопросов; инструкции по составлению анкет и таблиц экспертных оценок; порядок работы с экспертами; набор эвристических приемов для экспертов; инструкция для экспертов по заполнению анкет и таблиц; инструкция по обработке на ЭВМ экс-пертных анкет и таблиц; алгоритмы и программы для обработки данных на ЭВМ; заполненные экспертами анкеты и таблицы; ин-струкция по оценке компетентности экспертов; инструкция по синте-зу прогнозных моделей; набор способов верификации прогнозов.
Наличие полностью сформулированного информационного мас-сива дает полное основание для качественной работы с МЭП.
Формирование анкет и таблиц экспертных оценок . Информаци-онным массивом для разработки прогнозов методом эвристического прогнозирования является набор заполненных экспертами таблиц и анкет. Таблицы содержат перечень строго сформулиро-ванных вопросов. К вопросам в анкетах предъявляются следующие требования: 1) они должны быть сформулированы в общепринятых терминах; 2) формулировка их должна исключать всякую смысло-вую неоднозначность; 3) все вопросы должны логически соответ-ствовать структуре объекта прогноза; 4) они должны быть отне-сены к одному из трех перечисленных ниже видов. В зависимости от вида вопроса применяется определенная процедура его форму-лирования и составления анкет.
К первому виду относятся вопросы, ответы на которые содержат количественную оценку: вопросы относительно времени свершения событий; опросы относительно количественного значения прогнозируемого параметра; вопросы относи-тельно вероятности осуществления события; вопросы по оценке относительного влияния фак-торов друг на друга в некоторой шкале. Для данного типа вопроса применяется самая простая процедура составления анкет. В этом случае сам прогнозист, знающий объект прогноза, формулирует перечень значений оцениваемых параметров, вероятностей и вре-менных отрезков. При определении шкалы значений количествен-ных параметров (время, характеристика и пр.) целесообразно поль-зоваться неравномерной шкалой. Конкретное значение неравномер-ности определяется характером зависимости ошибки прогноза от времени упреждения.
Ко второму виду относятся содержательные вопросы, требую-щие свернутого ответа не в количественной форме. Вопросы, требующие ответа в свернутой форме, могут быть трех типов: дизъюнк-тивные; конъюнктивные; импликативные.
Вопросы, требующие содержательного ответа в свернутой форме, характеризуются наиболее сложной процедурой их форми-рования в анкету. Анкета в окончательном виде получается в результате трехэтапной итерации. На первом этапе прогнозист тщательно изучает результат работы (доклад) группы экспертов (метод комиссий) над определенной системой. Итогом изучения является формулировка первого варианта вопросника, который на втором этапе рассылается председателям соответствующих комис-сий для корректировки и уточнения. В результате получается вто-рой вариант вопросника. На третьем этапе вопросы группируются по темам и в определенном порядке внутри тем. Окончательный вариант вопросника приобретает форму таблиц экспертных оценок.
Подобные документы
Методы прогнозирования и программирования социальной сферы. Функции и приоритеты социальной политики Европейского союза, направления и принципы ее реформирования в Северной Европе. Характеристика и отличительные признаки ресурсной политики Норвегии.
курсовая работа , добавлен 16.11.2009
Изучение теоретических основ ценообразования на мировом рынке. Рассмотрение сущности и видов цен с точки зрения зарубежного опыта. Проведение анализа и прогнозирования данной сферы в Республике Беларусь; разработка рекомендаций по их совершенствованию.
курсовая работа , добавлен 24.09.2014
Порядок построения экономических моделей и их дальнейшее практическое применение. Методы прогнозирования курсов валют на современном этапе. Сущность теории ценообразования опциона, его премия. Выбор оптимального способа оплаты в международной практике.
контрольная работа , добавлен 16.10.2010
Государственное экономическое планирование в развитых странах: методы прогнозирования, планирования и налогообложения. Развитие агропромышленного комплекса Республики Казахстан. Методы оценки эффективности управления государственными пакетами акций.
контрольная работа , добавлен 06.10.2012
Цикличность развития экономики. Экономические циклы, их виды и причины возникновения. Великая депрессия 1929-1933 гг. Финансовый кризис 1998 года в России: причины и последствия. Мировой финансовый кризис 2008 г. Методы прогнозирования банкротства.
курсовая работа , добавлен 20.04.2015
Обоснование необходимости прогнозирования рынка при принятии управленческих решений в системе управления производственно-хозяйственной деятельностью. Построение модели мирового предложения и мирового спроса в кратковременной и долговременной перспективе.
лабораторная работа , добавлен 10.10.2016
Характеристика отдельных стран G7 и Е7. Динамика макроэкономических показателей. Прогноз изменения экономической силы. Выбор модели прогнозирования. Прогнозирование показателей G7, Е7 и мировой экономики. Анализ экономической силы G7 И Е7 в 2020 году.
курсовая работа , добавлен 28.05.2014
Развитие торговых отношений России с зарубежными странами , совершенствование их договорно-правовой базы. Динамика объема и технологической структуры внешней торговли государства, возможности прогнозирования с помощью макроэкономических показателей.
курсовая работа , добавлен 30.05.2015
Методы государственного регулирования внешнеэкономической деятельности и их классификация. Цели и задачи введения нетарифных мер. Меры прямого ограничения, квотирование, лицензирование, таможенные и административные формальности, иные нетарифные методы.
презентация , добавлен 18.05.2010
Характеристика международного бизнеса в системе международных экономических отношений. Деловой и кросс-культурный методы международного бизнеса. Формы и методы международного бизнеса компаний "Хьюлетт-Паккард" и "Бритиш Петролиум": сравнительный анализ.
В экономически развитых странах все большее распространение получает использование формализованных моделей управления финансами. Степень формализации находится в прямой зависимости от размеров предприятия: чем крупнее фирма, тем в большей степени ее руководство может и должно использовать формализованные подходы в финансовой политике. В западной научной литературе отмечается, что около 50% крупных фирм и около 18% мелких и средних фирм предпочитает ориентироваться на формализованные количественные методы в управлении финансовыми ресурсами и анализе финансового состояния предприятия. Ниже приведена классификация именно количественных методов прогнозирования финансового состояния предприятия.
Исходным пунктом любого из методов является признание факта некоторой преемственности (или определенной устойчивости) изменений показателей финансово-хозяйственной деятельности от одного отчетного периода к другому. Поэтому, в общем случае, перспективный анализ финансового состояния предприятия представляет собой изучение его финансово-хозяйственной деятельности с целью определения финансового состояния этого предприятия в будущем.
Существует определенное количество методик прогнозирования, которые могут быть использованы в реальной практике коммерческих фирм. Модели прогнозирования можно разбить на три группы:
џ качественные;
џ статистические;
џ факторные.
Эти три группы различаются по степени точности прогноза в долгосрочном и краткосрочном периодах, степени сложности и трудоемкости при расчетах, а также по источнику, из которого черпаются исходные данные для прогнозирования (например, экспертные оценки, маркетинговые исследования, статистика и пр.).
В качественных методах прогнозирование основывается на мнениях и суждениях экспертов, интуиции сотрудников, результатах маркетинговых исследований или сравнении с деятельностью конкурирующих предприятий. Информация такого рода, как правило, не содержит в себе количественных данных, является приблизительной и часто носит субъективный характер.
Разумеется, что из-за этого качественные методы не отвечают строгим научным критериям. Однако в случаях, когда статистические данные не доступны или нет уверенности, что статистические закономерности сохранятся в будущем, у качественных методов просто нет альтернатив. И хотя эти методы нельзя практически стандартизировать и добиться от них высокой точности прогноза, однако они с успехом могут использоваться при оценке рыночных перспектив нового продукта или новой технологии , прогнозировании изменений в законодательстве или правительственной политики и т. д. Как правило, качественные методы используются при средне - и долгосрочном прогнозировании.
В случаях, когда фирме доступен достаточно большой объем статистических данных и есть уверенность, что тренд или сезонные колебания достаточно стабильны, то статистические методы показывают высокую эффективность при составлении краткосрочных прогнозов спроса на товары. Главной предпосылкой статистических методик является предположение, что будущее является продолжением прошлого. Поскольку статистические данные, как правило, носят количественный характер, то при прогнозировании широко используются различные математические и количественные модели, заимствованные, прежде всего, из области статистики. Точность прогноза на период до 6 месяцев обычно является достаточно высокой. Это объясняется тем, что в краткосрочном периоде тенденции спроса обычно достаточно устойчивы.
Статистические прогнозы напрямую зависят от имеющихся исходных данных. Чем обширнее статистическая база, тем точнее прогноз. По мере поступления новых статистических данных постепенно меняется и прогноз на будущее. Вместе с тем при переломе тенденции статистический прогноз сигнализирует об этом с некоторым запозданием. Это является серьезным недостатком статистических моделей и накладывает на них определенные ограничения при практическом использовании.
Главной предпосылкой для использования факторных моделей при прогнозировании спроса является тот факт, что динамика спроса обусловлена целым рядом взаимно обусловленных причин, которые иногда можно выявить и проанализировать. Например, на уровень спроса положительно влияет уровень потребительского обслуживания. В этом случае при целенаправленной политике фирмы по повышению уровня сервиса можно ожидать увеличения объема спроса. В таких случаях говорят, что уровень обслуживания потребителей является фактором роста уровня спроса. В случае, когда удается полно и качественно выявить все причинно-следственные связи и описать их, факторные модели позволяют прогнозировать с высокой степенью точности будущие изменения спроса в средне - и долгосрочном периодах.
Факторные модели имеют несколько разновидностей:
- 1). џ статистические - например, регрессионные или эконометрические модели;
- 2).џ дескриптивные - например, при описании объекта по методу «черного ящика», описании жизненного цикла объекта или компьютерном имитационном моделировании.
При прогнозировании результирующих показателей используются в той или иной степени статистические данные по факторным показателям. И на основании прогноза факторных показателей выстраивается прогноз результирующего показателя.
Основной проблемой, затрудняющей применение факторных моделей на практике, является то, что найти, выявить и описать причинно-следственные связи достаточно сложно. Даже если некоторые такие взаимосвязи выявлены, часто оказывается, что в рассматриваемом периоде эти связи не являются определяющими при прогнозировании спроса. Для качественного прогноза с помощью факторной модели требуется выявить и описать все наиболее важные и значимые факторы влияния, но именно это как раз и бывает сложно сделать. Кроме того, для прогноза необходимо иметь статические данные не только по результирующим, но и по факторным показателям, причем за период не менее чем 6 месяцев. Из этих проблем точность факторных моделей, к сожалению, оказывается не слишком высока. Перечень прогнозируемых показателей может ощутимо варьировать. Этот набор величин можно принять в качестве первого критерия для классификации методов. Итак, по набору прогнозируемых показателей методы прогнозирования можно разделить на:
- 1. Методы, в которых прогнозируется один или несколько отдельных показателей, представляющих наибольший интерес и значимость для аналитика, например, выручка от продаж, прибыль, себестоимость продукции и т. д.
- 2. Методы, в которых строятся прогнозные формы отчетности целиком в типовой или укрупненной номенклатуре статей. На основании анализа данных прошлых периодов прогнозируется каждая статья баланса и отчета и финансовых результатах. Огромное преимущество методов этой группы состоит в том, что полученная отчетность позволяет всесторонне проанализировать финансовое состояние предприятия. Аналитик получает максимум информации, которую он может использовать для различных целей, например, для определения допустимых темпов наращивания производственной деятельности, для исчисления необходимого объема дополнительных финансовых ресурсов из внешних источников, расчета любых финансовых коэффициентов и т. д.
Методы прогнозирования отчетности, в свою очередь, делятся на методы, в которых каждая статья прогнозируется отдельно исходя из ее индивидуальной динамики, и методы, учитывающие существующую взаимосвязь между отдельными статьями как в пределах одной формы отчетности, так и из разных форм. Действительно, различные строки отчетности должны изменяться в динамике согласованно, так как они характеризуют одну и ту же экономическую систему.
В зависимости от вида используемой модели все методы прогнозирования можно подразделить на три большие группы:
- 1. Методы экспертных оценок, которые предусматривают многоступенчатый опрос экспертов по специальным схемам и обработку полученных результатов с помощью инструментария экономической статистики. Это наиболее простые и достаточно популярные методы, история которых насчитывает не одно тысячелетие. Применение этих методов на практике, обычно, заключается в использовании опыта и знаний торговых, финансовых, производственных руководителей предприятия. Как правило, это обеспечивает принятие решения наиболее простым и быстрым образом. Недостатком является снижение или полное отсутствие персональной ответственности за сделанный прогноз. Экспертные оценки применяются не только для прогнозирования значений показателей, но и в аналитической работе, например, для разработки весовых коэффициентов, пороговых значений контролируемых показателей и т. п.
- 2. Стохастические методы, предполагающие вероятностный характер, как прогноза, так и самой связи между исследуемыми показателями. Вероятность получения точного прогноза растет с ростом числа эмпирических данных. Эти методы занимают ведущее место с позиции формализованного прогнозирования и существенно варьируют по сложности используемых алгоритмов. Наиболее простой пример - исследование тенденций изменения объема продаж с помощью анализа темпов роста показателей реализации. Результаты прогнозирования, полученные методами статистики, подвержены влиянию случайных колебаний данных, что может иногда приводить к серьезным просчетам.
Стохастические методы можно разделить на три типовые группы, которые будут названы ниже. Выбор для прогнозирования метода той или иной группы зависит от множества факторов, в том числе и от имеющихся в наличии исходных данных.
Первая ситуация - наличие временного ряда - встречается на практике наиболее часто: финансовый менеджер или аналитик имеет в своем распоряжении данные о динамике показателя, на основании которых требуется построить приемлемый прогноз. Иными словами, речь идет о выделении тренда. Это можно сделать различными способами , основными из которых являются простой динамический анализ и анализ с помощью авторегрессионых зависимостей.
Вторая ситуация - наличие пространственной совокупности - имеет место в том случае, если по некоторым причинам статистические данные о показателе отсутствуют, либо есть основание полагать, что его значение определяется влиянием некоторых факторов. В этом случае может применяться многофакторный регрессионный анализ, представляющий собой распространение простого динамического анализа на многомерный случай.
Третья ситуация - наличие пространственно-временной совокупности -имеет место в том случае, когда: а) ряды динамики недостаточны по своей длине для построения статистически значимых прогнозов; б) аналитик имеет намерение учесть в прогнозе влияние факторов, различающиеся по экономической природе и их динамике. Исходными данными служат матрицы показателей, каждая из которых представляет собой значения тех же самых показателей за различные периоды или на разные последовательные даты.
3. Детерминированные методы, предполагающие наличие функциональных или жестко детерминированных связей, когда каждому значению факторного признака соответствует вполне определенное неслучайное значение результативного признака. В качестве примера можно привести зависимости, реализованные в рамках известной модели факторного анализа фирмы Дюпон. Используя эту модель и подставляя в нее прогнозные значения различных факторов, например выручки от реализации, оборачиваемости активов, степени финансовой зависимости и других, можно рассчитать прогнозное значение одного из основных показателей эффективности - коэффициента рентабельности собственного капитала.
Другим весьма наглядным примером служит форма отчета о прибылях и убытках, представляющая собой табличную реализацию жестко детерминированной факторной модели, связывающей результативный признак (прибыль) с факторами (доход от реализации, уровень затрат, уровень налоговых ставок и др.).
Здесь нельзя не упомянуть об еще одной группе методов, основанных на построении динамических имитационных моделей предприятия. В такие модели включаются данные о планируемых закупках материалов и комплектующих, объемах производства и сбыта, структуре издержек, инвестиционной активности предприятия, налоговом окружении и т.д. Обработка этой информации в рамках единой финансовой модели позволяет оценить прогнозное финансовое состояние компании с очень высокой степенью точности. Реально такого рода модели можно строить только с использованием персональных компьютеров, позволяющих быстро производить огромный объем необходимых вычислений. Однако эти методы не являются предметом настоящей работы, поскольку должны иметь под собой гораздо более широкое информационное обеспечение, чем бухгалтерская отчетность предприятия, что делает невозможным их применение внешними аналитиками.
Формализованные модели прогнозирования финансового состояния предприятия подвергаются критике по двум основным моментам:
- а) в ходе моделирования могут, а фактически и должны быть разработаны несколько вариантов прогнозов, причем формализованными критериями невозможно определить, какой из них лучше;
- б) любая финансовая модель лишь упрощенно выражает взаимосвязи между экономическими показателями. На самом деле оба эти тезиса вряд ли имеют негативный оттенок; они лишь указывают аналитику на существующие ограничения любого метода прогнозирования, о которых необходимо помнить при использовании результатов прогноза.
Каждое значение временного ряда может состоять из следующих составляющих: тренда, циклических, сезонных и случайных колебаний. Метод простого динамического анализа используется для определения тренда имеющегося временного ряда. Данную составляющую можно рассматривать в качестве общей направленности изменений значений ряда или основной тенденции ряда. Циклическими называются колебания относительно линии тренда для периодов свыше одного года. Такие колебания в рядах финансовых и экономических показателей часто соответствуют циклам деловой активности: резкому спаду, оживлению, бурному росту и застою. Сезонными колебаниями называются периодические изменения значений ряда на протяжении года. Их можно вычленить после анализа тренда и циклических колебаний. Наконец, случайные колебания выявляются путем снятия тренда, циклических и сезонных колебаний для данного значения . Остающаяся после этого величина и есть беспорядочное отклонение, которое необходимо учитывать при определении вероятной точности принятой модели прогнозирования.
Метод простого динамического анализа исходит из предпосылки, что прогнозируемый показатель (Y) изменяется прямо (обратно) пропорционально с течением времени. Поэтому для определения прогнозных значений показателя Y строится, например, следующая зависимость:
Y t = a + b*t, (1.1)
где t - порядковый номер периода.
Параметры уравнения регрессии (а,b) находятся, как правило, методом наименьших квадратов. Существуют также другие критерии адекватности. Для понимания сущности данного вопроса необходимо предварительно дать определения понятий - метод.
Применительно к экономической науке и практике - метод - это:
- 1) система правил и приемов подхода к изучению явлений и закономерностей природы, общества и мышления;
- 2) путь, способ достижения определенных результатов в познании и практике;
- 3) прием теоретического исследования или практического осуществления чего-нибудь, исходящий из знания закономерностей развития объективной действительности и исследуемого предмета, явления, процесса.
Методы прогнозирования - это совокупность приёмов и способов мышления, позволяющих на основе анализа ретроспективных данных об исследуемом объекте вывести суждения определённой достоверности относительно будущего развития объекта.
Вся совокупность методов прогнозирования может быть представлена двумя группами - в зависимости от степени их однородности:
- · простые методы;
- · комплексные методы.
Группа простых методов объединяет однородные по содержанию и используемому инструментарию методы прогнозирования (например, экстраполяция тенденций, морфологический анализ и др.).
Комплексные методы отражают совокупности, комбинации методов, чаще всего реализуемые специальными прогностическими системами.
Кроме того, все методы прогнозирования поделены еще на три класса:
- · фактографические методы;
- · экспертные методы;
- · комбинированные методы.
В основу их выделения положен характер информации, на базе которой составляется прогноз:
- 1) фактографические методы базируются на фактическом информационном материале о прошлом и настоящем развитии объекта прогнозирования. Чаще всего применяются при поисковом прогнозировании для эволюционных процессов;
- 2) экспертные (интуитивные) методы основаны на использовании знаний специалистов-экспертов об объекте прогнозирования и обобщении их мнений о развитии (поведении) объекта в будущем. Экспертные методы в большей мере соответствуют нормативному прогнозированию скачкообразных процессов;
- 3) комбинированные методы включают методы со смешанной информационной основой, в которых в качестве первичной информации наряду с экспертной используется и фактографическая.
В свою очередь, каждый из перечисленных классов также подразделяется на группы и подгруппы. Так, среди фактографических методов выделяются группы:
- · статистических (параметрических) методов;
- · опережающих методов.
Группа статистических методов включает методы, основанные на построении и анализе динамических рядов характеристик (параметров) объекта прогнозирования. Среди них наибольшее распространение получили экстраполяция, интерполяция, метод аналогий (модель подобия), параметрический метод и др.
Группа опережающих методов состоит из методов, основанных на использовании свойства научно-технической информации опережать реализацию научно-технических достижений. Среди методов этой группы выделяется публикационный, основанный на анализе и оценке динамики публикаций.
Среди экспертных методов выделяют группы по следующим признакам:
- · по количеству привлеченных экспертов;
- · по наличию аналитической обработки данных экспертизы (табл. 3).
Прогнозирование спроса в теории осуществляется различными методами. На практике, как правило, реализуется комплексный подход, учитывающий сильные и слабые стороны применяемых методов. Общие методы прогнозирования спроса основываются на:
- · Метод экспертных оценок;
- · Статистические методы (фактографические);
- · Комбинированные методы.
Статистические методы прогнозирования:
В методическом плане основным инструментом любого прогноза является схема экстраполяции. Сущность экстраполяции заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций развития объекта прогноза и переносе их на будущее.
Методы экстраполяции трендов, основанные на статистическом анализе временных рядов, позволяют прогнозировать темпы роста продажи товаров в ближайшей перспективе, исходя из тенденций, сложившихся в прошедшем периоде времени. Обычно методы экстраполяции трендов применяются в краткосрочном (не более одного года) прогнозировании, когда число изменений в среде минимально. Прогноз создается для каждого конкретного объекта отдельно и последовательно на каждый следующий момент времени. Если прогноз составляется для товара, в задачи прогнозирования, основанного на экстраполяции трендов, входят анализ спроса и анализ продаж этого товара. Результаты прогнозирования используются во всех сферах внутрифирменного планирования, включая общее стратегическое планирование, финансовое планирование, планирование производства и управления запасами, маркетинговое планирование и управление торговыми потоками и торговыми операциями.
Наиболее распространенными методами экстраполяции трендов являются:
- · метод скользящего среднего;
- · метод экспоненциального сглаживания;
- · Прогнозирование на основе метода сезонных колебаний;
Необходимость применения скользящей средней вызывается следующими обстоятельствами. Бывают случаи, когда имеющиеся данные динамического ряда не позволяют обнаруживать какую-либо тенденцию развития (тренд) того или иного процесса (из-за случайных и периодических колебаний исходных данных). В таких случаях для лучшего выявления тенденции прибегают к методу скользящей средней.Экстраполяция по скользящей средней - может применяться для целей краткосрочного прогнозирования.
Метод скользящей средней состоит в замене фактических уровней динамического ряда расчетными, имеющими значительно меньшую колеблемость, чем исходные данные. При этом средняя рассчитывается по группам данных за определенный интервал времени, причем каждая последующая группа образуется со сдвигом на один год (месяц). В результате подобной операции первоначальные колебания динамического ряда сглаживаются, поэтому и операция называется сглаживанием рядов динамики (основная тенденция развития выражается при этом уже в виде некоторой плавной линии).
Метод скользящей средней называется так потому, что при вычислении средние как бы скользят от одного периода к другому; с каждым новым шагом средняя как бы обновляется, впитывая в себя новую информацию о фактически реализуемом процессе. Таким образом, при прогнозировании исходят из простого предположения, что следующий во времени показатель по своей величине будет равен средней, рассчитанной за последний интервал времени.
· Экспоненциальная средняя. При рассмотрении скользящей средней было отмечено, что чем "старше" наблюдение, тем меньше оно должно оказывать влияние на величину скользящей средней. То есть влияние прошлых наблюдений должно затухать по мере удаления от момента, для которого определяется средняя.
Одним из простейших приемов сглаживания динамического ряда с учетом "устаревания" является расчет специальных показателей, получивших название экспоненциальных средних, которые широко применяются в краткосрочном прогнозировании. Основная идея метода состоит в использовании в качестве прогноза линейной комбинации прошлых и текущих наблюдений. Экспоненциальная средняя рассчитывается по формуле:
Qt+1 = L*yt + (1 - L) * Q t-1 (1.2)
Где Q - экспоненциальная средняя (сглаженное значение уровня ряда);
L - коэффициент, характеризующий вес текущего наблюдения при расчете экспоненциальной средней (параметр сглаживания), 0
t - индекс текущего периода;
y - фактическое значение уровня ряда.
Метод экспоненциального сглаживания представляет прогноз показателя на будущий период в виде суммы фактического показателя за данный период и прогноза на данный период, взвешенных при помощи специальных коэффициентов.
Применение скользящей и экспоненциальных средних в качестве основы для прогностической оценки имеет смысл лишь при относительно небольшой колеблемости уровней. Данные методы прогнозирования относятся к числу наиболее распространенных методов экстраполяции трендов.
· Прогнозирование на основе сезонных колебаний.
Сезонные колебания -- повторяющиеся из года в год изменения показателя в определенные промежутки времени. Наблюдая их в течение нескольких лет для каждого месяца (или квартала), можно вычислить соответствующие средние, или медианы, которые принимаются за характеристики сезонных колебаний.
Одним из статистических методов прогнозирования является расчет прогнозов на основе сезонных колебаний уровней динамического ряда. При этом под сезонными колебаниями понимаются такие изменения уровня динамического ряда, которые вызываются влияниями времени года. Проявляются они с различной интенсивностью во всех сферах жизни общества: производстве, обращении и потреблении. Их роль очень велика в торговле продуктами питания, на транспорте и др. Сезонные колебания строго цикличны - повторяются через каждый год, хотя сама длительность времен года имеет колебания.
Для изучения сезонных колебаний необходимо иметь уровни за каждый квартал, а лучше за каждый месяц, иногда даже за декады, хотя декадные уровни могут уже сильно исказиться мелкомасштабной случайной колеблемостью. Методика статистического прогноза по сезонным колебаниям основана на их экстраполяции, т.е. на предположении, что параметры сезонных колебаний сохраняются до прогнозируемого периода. В общем виде индексы сезонности определяются отношением исходных (эмпирических) уровней ряда к теоретическим (расчетным) уровням, выступающих в качестве базы сравнения. Индексы сезонности рассчитываются по формуле:
Is t = Yt * Yi (1.3)
где Is t - индивидуальный индекс сезонности;
Yt - эмпирический уровень ряда динамики;
Yi - теоретический уровень ряда динамики.
В результате того, что в формуле измерение сезонных колебаний проводится на базе соответствующих теоретических уровней тренда, в индивидуальных индексах сезонности влияние основной тенденции развития устраняется. Поскольку на сезонные колебания могут накладываться случайные отклонения, для их устранения производится усреднение индивидуальных индексов сезонности одноименных внутригодовых периодов анализируемого ряда динамики. Поэтому для каждого периода годового цикла определяются обобщенные показатели в виде средних индексов сезонности (Is):
Is = Is t / n (1.4)
где n - число периодов годового цикла.
Рассчитанные таким образом средние индексы сезонности свободны от влияния основной тенденции развития и случайных отклонений.
· Прогнозирование методом линейной регрессии.
Прогнозирование методом линейной регрессии - является одним из наиболее широко применяемых формализованных методов прогнозирования. Метод базируется на взаимосвязи (линейной зависимости) факторного и результативного показателя:
Y (x) = a + bx (1.5)
где x - факторный показатель;
Y - результативный показатель.
Приведенные методы измерения сезонных колебаний не являются единственными. Так, для выявления сезонных колебаний можно применять и рассмотренный выше метод скользящей средней, и другие методы.
Комбинированные методы:
На практике существует тенденция сочетать различные методы прогнозирования спроса. Поскольку итоговый прогноз играет очень важную роль для всех аспектов внутрифирменного планирования, то желательно создать прогнозную систему, в которой может использоваться любой вводимый фактор.
Также при составлении прогноза важно учитывать риски:
Рис.1.
Риски влияющие на прогнозирование;
Развитие специфических приемов прогнозного анализа происходит в результате конкретизации общих методов анали-за деятельности коммерческих организации, исключительно с точки зрения их динамики, движения. К числу таких приемов относятся методы экономического прогнозирования.
В наших условиях экономическое прогнозирование - это начальный этап планирования. Основываясь на изучении за-кономерностей развития различных экономических явлений и процессов, оно выявляет наиболее вероятные пути этого разви-тия и дает базу для выбора и обоснования плановых решений на любом уровне управления. Таким образом, функции эконо-мического прогнозирования исключительно аналитические. Ниже рассмотрены наиболее распространенные методы эконо-мического прогнозирования.
Исходным пунктом любого из методов прогнозирования является признание факта некоторой преемственности (или определенной устойчивости) изменении показателей финансо-во-хозяйственной деятельности от одного отчетного периода, к другому. Поэтому, в общем случае, прогнозный анализ при-менительно к коммерческой организации представляет собой изучение ее финансово-хозяйственной деятельности с целью определения финансового состояния в будущем
Для целей прогнозного анализа используется весь методи-ческий инструментарий анализа, достаточно хорошо описан-ный в экономической и специальной литературе. Однако осно-ву прогнозного анализа составляют методы прогнозирования и методы оценки чувствительности экономических результатов к предполагаемым изменениям ситуации.
В зависимости от вида используемой модели все мето-ды прогнозного анализа можно подразделить на три большие группы (см. рисунок):
Они используются в основном для прогнозирования со-стояния объекта в условиях частичной или полной неопре-деленности, когда основным источником получения необхо-димых сведений служит интеллектуальный потенциал про-фессионалов, работающих в определенных сферах науки и бизнеса.
Наиболее распространенным из них является метод экс-пертных оценок - организованный сбор суждений и предло-жений специалистов (экспертов) по исследуемой проблеме с последующей обработкой полученных ответов.
Комбинированный метод
Стохастические методы
можно разделить на три типовые группы, которые показаны ниже. Выбор для прогнозирования ме-тода той или иной группы зависит от множества факторов, в том числе и от имеющихся в наличии исходных данных.
Первая ситуация
- наличие динамического ряда - встречается на практике наиболее часто, финансовый менеджер или аналитик имеет в своем распоряжении данные о динамике показателя, на ос-новании которых требуется построить приемлемый прогноз. Ины-ми словами, речь идет о выделении тренда. Это можно сделать различными способами, основными из которых являются простой динамический анализ и анализ с помощью авторегрессионных за-висимостей.
Вторая ситуация
- наличие пространственной совокупности - имеет место в том случае, если по некоторым причинам стати-стические данные о показателе отсутствуют либо есть основание полагать, что его значение определяется влиянием некоторых фак-торов. В этом случае может применяться корреляционно-регрес-сионный анализ, представляющий собой распространение просто-го динамического анализа на многомерный случай
Третья ситуация
- наличие пространственно-временной со-вокупности - имеет место в том случае, когда: а) ряды динамики недостаточны по своей длине для построения статистически зна-чимых прогнозов; б) аналитик имеет намерение учесть в прогнозе влияние факторов, различающиеся по экономической природе и их динамике. Исходными данными служат матрицы показателей, каждая из которых представляет собой значения тех же самых по-казателей за различные периоды или на разные последовательные даты.
Необходимые предпосылки стохастического моделирования -возможность составления совокупности наблюдений (измерений); качественная однородность совокупности относительно изучае-мых связей; достаточная размерность совокупности; наличие со-ответствующих методов.
Метод экспертных оценок. Основой данного метода являет-ся опрос специалистов, который может быть индивидуальным, коллективным, очным, заочным, анонимным и т.д. Организаторы опроса определяют объект и цели экспертизы, подбирают экс-пертов, проверяют их компетентность, анализируют и обобщают результаты экспертизы. Как правило, это обеспечивает принятие решения наиболее простым и быстрым образом.
Недостатком является снижение или полное отсутствие пер-сональной ответственности за сделанный прогноз. Экспертные оценки применяются не только для прогнозирования значений по-казателей, но и в аналитической работе, например, для разработки весовых коэффициентов, пороговых значений контролируемых показателей и т.п.
Метод пропорциональных зависимостей. Основой для раз-работки метода пропорциональных зависимостей показателей послужили две основные характеристики любой экономической системы - взаимосвязь и инерционность.
Одной из очевидных особенностей действующей коммерче-ской организации как системы является естественным образом со-гласованное взаимодействие ее отдельных элементов (как качест-венных, так и поддающихся количественному измерению) Это оз-начает, что многие показатели, даже не будучи связанными между собой формализованными алгоритмами, тем не менее изменяются в динамике согласованно.
Вторая характеристика - инерционность - в приложении к дея-тельности компании также достаточно очевидна. Смысл ее состо-ит в том, что в стабильно работающей компании с устоявшимися технологическими процессами и коммерческими связями не мо-жет быть резких «всплесков» в отношении ключевых количест-венных характеристик.
Метод балансовой модели. Суть данного метода ясна уже из его названия. Баланс коммерческой организации может быть опи-сан различными балансовыми уравнениями, отражающими взаи-мосвязь между различными активами и пассивами. Простейшим из них является основное балансовое уравнение, которое имеет вид:
На практике прогнозирование осуществляется путем исполь-зования более сложных балансовых уравнений и сочетания данно-го метода с другими методами прогнозирования.
Метод системы опережающих индикаторов. Идея, лежащая в основе такого подхода, основывается на предсказании перехода деятельности от подъема к спаду (или, наоборот, от спада к подъе-му), для чего необходимо сформировать «систему раннего обнару-жения». Иными словами, необходимо выделить такие показатели, у которых поворотные точки наступают раньше, чем у показателя, принятого для характеристики жизненного цикла. Тогда достиже-ние пика или впадины опережающим индикатором позволило бы указать на вероятное приближение пика или впадины в динамике развития организации.
В зависимости от того, как экономические показатели меня-ются в ходе жизненного цикла (достигают ли они максимума (ми-нимума) до или после прохождения высшей (низшей) поворотной точки жизненного цикла) выделяют три типа циклических показа-телей - опережающие, совпадающие и запаздывающие.
Опережающими считаются такие показатели, которые дости-гают максимума (минимума) перед наступлением пика (дна) дело-вой активности.
Совпадающими считаются показатели, которые изменяются одновременно с динамикой экономической активности.
Запаздывающими считаются показатели, которые достигают максимума (минимума) после пика (дна) экономической активности.
Проведенное исследование позволяет сделать вывод о том, что почти все исследуемые показатели носят циклический харак-тер и во многом копируют динамику рентабельности активов. Но проявление их различно. Некоторые из них являются совпадаю-щими на отдельной стадии развития организации, некоторые опережающими, другие запаздывающими.
Методы динамических рядов. Динамический ряд (у) - это ряд наблюдений значений измеряемого параметра (u) в после-довательные моменты времени (t):
Динамический ряд есть частный случай табличной функ-ции, которая представляет собой «протокол» любого наблюде-ния. Математическая обработка этой таблицы преследует цепь «выжать» из нее как можно больше информации о закономер-ностях развития данного явления в прошлом и настоящем, ис-пользовать полученную информацию для характеристики яв-ления в будущем.
Задача прогнозирования динамических рядов заключается в том, чтобы по имеющимся наблюдениям за ходом экономи-ческого процесса в моменты времени t 1 , t 2 ,..., t n , предсказать зна-чения измеряемого параметра в моменты времени t n + 1 , t n + 2 и т.д.
Несмотря на кажущуюся простоту, данная задача в общем виде для нестационарных процессов еще не решена. Большая часть экономических процессов нестационарна, что выража-ется наличием в динамических рядах эволюторной составля-ющей - временного тренда. Поэтому среди методов прогнози-рования динамических рядов большое место занимают всевоз-можные неформальные, эмпирические методы, базирующиеся на интуиции и опыте специалистов определенной отрасли.
Неформальный подход к анализу позволяет сделать прогно-зирование динамических рядов более определенным путем вве-дения в подстановку дополнительных ограничений (условий).
Метод простого динамического анализа. Каждое значение временного ряда может состоять из следующих составляющих: тренда, циклических, сезонных и случайных колебаний. Метод простого динамического анализа используется для определения тренда имеющегося временного ряда Данную составляющую можно рассматривать в качестве общей направленности измене-ний значений ряда или основной тенденции ряда. Циклическими называются колебания относительно линии тренда для периодов свыше одного года. Такие колебания в рядах финансовых и эко-номических показателей часто соответствуют циклам деловой активности: резкому спаду, оживлению, бурному росту и застою. Сезонными колебаниями называются периодические изменения значений ряда на протяжении года. Их можно вычленить после анализа тренда и циклических колебаний. Наконец, случайные ко-лебания выявляются путем снятия тренда, циклических и сезон-ных колебаний для данного значения. Остающаяся после этого величина и есть беспорядочное отклонение, которое необходимо учитывать при определении вероятной точности принятой модели прогнозирования.
Метод простого динамического анализа исходит из пред-посылки, что прогнозируемый показатель (Y) изменяется прямо (обратно) пропорционально с течением времени. Поэтому для оп-ределения прогнозных значений показателя Үстроится, например, следующая зависимость:
Метод авторегрессионных зависимостей. В основу этого метода заложена достаточно очевидная предпосылка о том, что экономические процессы имеют определенную специфику. Они отличаются, во-первых, взаимозависимостью и. во-вторых, опре-деленной инерционностью. Последняя означает, что значение пра-ктически любого экономического показателя в момент времени (зависит определенным образом от состояния этого показатели в предыдущих периодах (в данном случае абстрагируемся от вли-яния других факторов), т.е. значения прогнозируемою показате-ля в прошлых периодах должны рассматриваться как факторные признаки. Уравнение авторегрессионной зависимости в наиболее общей форме имеет вид:
Достаточно точные прогнозные значения могут быть получе-ны уже при k = 1. На практике также нередко используют моди-фикацию уравнения (4), вводя в него в качестве фактора период времени t, т.е. объединяя методы авторегрессии и простого ди-намического анализа. В этом случае уравнение регрессии будет иметь вид:
Коэффициенты регрессии данного уравнения могут быть най-дены методом наименьших квадратов.
Метод корреляционно-регрессионного анализа. Это клас-сический метод стохастического моделирования. Он изучает взаимосвязи показателей хозяйственной деятельности, когда зависимость между ними не является строго функциональной и искажена влиянием посторонних, случайных факторов. При проведении корреляционно-регрессионного анализа строят различные корреляционные и регрессионные модели хозяйст-венной деятельности. В этих моделях выделяют факторные и результативные показатели (признаки). В зависимости от коли-чества исследуемых показателей различают парные и многофак-торные модели корреляционно-регрессионного анализа.
Корреляционно-регрессионный анализ применяется для по-строения прогноза какого-либо показателя с учетом существую-щих связей между ним и другими показателями. Сначала в резуль-тате качественного анализа выделяется k факторов (X 1 , Х 2 ,., X k), влияющих, по мнению аналитика, на изменение прогнозируемого показателя Y, и строится чаще всего линейная регрессионная за-висимость типа:
Основной задачей корреляционно-регрессионного анализа является выяснение формы и тесноты связи между результа-тивным и факторными показателями. Под формой связи пони-мают тип аналитической формулы, выражающей зависимость результативного показателя от изменений факторного. Раз-личают связь прямую, когда с ростом (снижением) значений факторного показателя наблюдается тенденция к росту (сни-жению) значений результативного показателя. В противном случав между показателями существует обратная связь. Форма связи может быть прямолинейной (ей соответствует уравнение прямой пинии), когда наблюдается тенденция равномерного возрастания или убывания результативного показателя, в про-тивном случае форма связи называется криволинейной (ей со-ответствует уравнение параболы, гиперболы и др.).
Аналитические достоинства регрессионных моделей за-ключаются в том, что, во-первых, точно определяются фактор, по которому выявляются резервы повышения результативно-сти финансово-хозяйственной деятельности; во-вторых, вы-являются объекты с более высоким уровнем эффективности; в-третьих, возникает возможность количественно измерить экономический эффект от внедрения передового опыта, прове-дения организационно-технических мероприятий.
Метод имитационных моделей. В такие модели включаются данные о планируемых закупках материалов и комплектующих, объемах производства и сбыта, структуре издержек, инвестици-онной активности компании, налоговом окружении и т д. Об-работка этой информации в рамках единой финансовой модели позволяет оценить прогнозное финансовое состояние организа-ции с очень высокой степенью точности. Реально такого рода модели можно строить только с использованием персональных компьютеров, позволяющих быстро производить огромный объ-ем необходимых вычислений. Однако эти методы не являются предметом настоящей работы, поскольку должны иметь под со-бой гораздо более широкое информационное обеспечение, чем бухгалтерская отчетность, что делает невозможным их примене-ние внешними аналитиками.
Литература:
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
Участок, до которого не дошла продольная волна, уменьшился за время At на величину ((/ / 2) + а0 At). Участок, где прошла только продольная волна, увеличился на (a0 - b) At, а участок, где прошли и продольная и поперечная волны, увеличился на b At. Посчитаем полную энергию всей струны за время At
2Wo((/ / 2) + ao At) + 2[ W^ - b) + E2b] At = = W/ + 2[(W - Wo)ao + (W2 - Wi) b] At = W/ +
E{[(eo - ei)2 + ei2 - eo2]ao +
+ [(eo - e1)2 (((1 + cos9) / (1 - cos9)) - 1)]x xao ((eo - e1) / (1 + e1)) (cos9 / (1 - cos9))}At =
Wo/ + Eao{(eo - e1)2 + e12 - eo2 + (eo - e1)2(2
cos29 / (1 - cos9)2) ((eo - e1) / (1 + e1))} At =,
учитывая
Wo/ + Eao[(eo - e1)2 + e12 - eo2 + 2(eo - e1) x x (e1 (1 + e1) / (1 + e1))] At = Wo/ + Eao At = Wo/.
Как и следовало из постоянства интеграла энергии, полная энергия всей струны в этой конкретной задаче постоянна, а если за нулевую энергию принять Eo/, то полная энергия будет равна нулю.
Сравним величины энергий на участках продольной и поперечных волн в случае,
когда продольное возмущение дошло до конца струны. В этом случае участок, где нет возмущения, отсутствует, а полная энергия складывается из энергий на участках продольного и поперечного движений. Очевидно, что вклад энергии продольных и поперечных волн в полную энергию будет одинаков.
При рассмотрении продольно-поперечных движений струн нельзя ограничиваться рассмотрением только поперечных составляющих и пренебрегать продольными, поскольку они вносят равный вклад в энергетику и динамическое нагружение струн.
В приведенных примерах проиллюстрировано распределение энергий между продольными и поперечными волнами и проведено сравнение энергий поперечного и продольного движений. Вклад энергии продольных составляющих в общую энергию колебаний гибких связей может быть найден как разность между полной энергией и энергией поперечных колебаний.
Библиографический список
1. Рахматулин, Х.А. Прочность при интенсивных кратковременных нагрузках / Х.А. Рахматулин, Ю.А. Демьянов. - М.: Физматгиз, 1961. - 399 с.
2. Демьянов, Ю.А. К уточнению теории колебаний музыкальных инструментов / Ю.А. Демьянов // Доклады РАН. - 1999. - Т 369. - № 4.
МЕТОДИКА ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ СТОХАСТИЧЕСКИХ ЭКОНОМИЧЕСКИХ СИСТЕМ
А.В. ТРЕГУБ, доц. МГУЛ, канд. физ.-мат. наук,
И.В. ТРЕГУБ, доц. Финансовой академии при Правительстве РФ, канд. техн. наук
Математическое моделирование сложных экономических систем на современном этапе предполагает, как правило, использование аналитических подходов к изучению функционирования реальных объектов. В различных задачах, встречающихся при моделировании, могут использоваться величины, значения которых определяются случайным образом. Примерами таких величин могут быть случайные воздействия внешней среды, случайные моменты времени, в которые система находится в особом состоянии и т.п. Системы, в которых переменные или воз-
действия являются случайными величинами, называются стохастическими.
На сегодняшний день технологии прогнозирования экономических показателей разработаны достаточно хорошо. Среди методов прогнозирования, наиболее часто применяемых в экономической практике, можно отметить методы экспертных оценок, основывающиеся на субъективной оценке текущего момента и перспектив развития. Эти методы успешно используются для конъюнктурных оценок, особенно в случаях, когда невозможно получить непосредствен-
ЛЕСНОЙ ВЕСТНИК 2/2oo8
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
ную информацию о каком-либо явлении или процессе.
Методы анализа и прогнозирования динамических рядов связаны с исследованием изолированных друг от друга показателей, каждый из которых состоит из двух элементов: из прогноза детерминированной компоненты и прогноза случайной компоненты. Разработка первого прогноза не представляет больших трудностей, если определена основная тенденция развития и возможна ее дальнейшая экстраполяция. Прогноз случайной компоненты связан с определением закона вероятности и оценкой его параметров.
В основе казуальных методов определяются факторы, обусловливающие поведение прогнозируемого показателя. Поиск этих факторов приводит собственно к экономикоматематическому моделированию - построению модели поведения экономического объекта, учитывающей развитие взаимосвязанных явлений и процессов. Следует отметить, что применение многофакторного прогнозирования требует решения проблемы выбора факторов, которая связана с необходимостью глубокого изучения экономического содержания рассматриваемого явления или процесса.
Среди методов оценивания на практике успешно применяется теория игр, регрессионный анализ, известно нейросетевое прогнозирование, нечеткая логика и имитационное моделирование. Разработаны соответствующие программные пакеты, которые, к сожалению, не всегда доступны рядовому пользователю, в то же время многие из этих проблем можно достаточно успешно решать, реализуя алгоритмы в широко известном и распространенном пакете прикладных программ MS Excel.
В данной статье представлено вероятностное прогнозирование объема продаж дополнительных услуг на рынке телекоммуникаций, осуществленное на основе эмпирических данных.
Выборочное наблюдение. Под выборочным наблюдением понимается метод статистического исследования, при котором обобщающие показатели изучаемой системы устанавливаются по некоторой ее части на основе положений случайного отбора. При
выборочном методе изучается сравнительно небольшая часть всех данных, характеризующих систему. Выборка должна быть представительной (репрезентативной), чтобы по ней можно было судить о генеральной совокупности. Репрезентативность означает, что объекты выборки должны обладать теми же свойствами, что и генеральная совокупность. Предупреждение систематических ошибок выборочного обследования достигается в результате применения научно обоснованных способов формирования выборочной совокупности, в зависимости от которых выборка может быть: собственно-случайной, механической, типической, серийной, комбинированной. Собственно-случайная выборка образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. Формирование выборки может быть осуществлено по схемам повторного и бесповторного отбора. При этом повторный отбор предполагает возможность включения в выборку одного и того же элемента генеральной совокупности два раза и более, бесповторный отбор исключает такую возможность.
Первый шаг на пути создания прогноза при выборочном наблюдении - это сбор и анализ статистической информации об исследуемой системе, формирование выборки из генеральной совокупности, отслеживание аномальных результатов в выборке.
В нашем случае анализируемым параметром является объем продаж дополнительных услуг регионального оператора сотовой связи за один месяц. Под генеральной совокупностью в данной задаче мы будем понимать множество месячных объемов продаж дополнительных услуг по предоставлению пользователю информации (новости, биржевые сводки, прогноз погоды и т.п.), полученных региональным оператором за все время работы на рынке. При этом к одной генеральной совокупности будем относить информационные сервисы с сопоставимыми за анализируемый период объемами продаж.
Выборкой из генеральной совокупности в нашем случае будет множество месячных объемов продаж услуг определенного сервиса. Формирование выборки осуществляется
ЛЕСНОЙ ВЕСТНИК 2/2008
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
в табличном процессоре Microsoft Excel, в котором выполнена собственно-случайная выборка, реализованная по схеме повторного отбора.
Далее необходимо построить вероятностную модель, оценить ее параметры и построить прогноз. Построение модели основано на выборе и идентификации закона распределения. Алгоритм выбора закона распределения целиком и полностью базируется на аппарате математической статистики. Идентификация закона распределения заключается в последовательной реализации двухэтапной процедуры для каждого вида параметрической модели из рассматриваемого множества законов. На первом этапе процедуры на основании выборочных данных строится модель закона определенного вида (из рассматриваемого множества моделей), оцениваются параметры этой модели. На втором этапе оценивается степень адекватности полученной модели экспериментальным наблюдениям, как правило, с применением различных критериев согласия.
При проведении выборочного обследования и построения прогноза объема продаж мы будем формировать две выборки из генеральной совокупности. Одну - для подбора и идентификации закона распределения вероятностей, другую - для оценки параметров моделируемого теоретического закона распределения.
Анализ эмпирических данных. Прежде чем приступать к построению модели, необходимо проанализировать наблюдаемые значения переменных на наличие аномальных результатов, т.е. таких наблюдений, которые резко отличаются в большую или меньшую сторону от средних значений по выборке. Поскольку существенным моментом вероятностного прогнозирования является предположение о законе распределения, соответствующего реальным наблюдаемым величинам, и оценка параметров этого распределения , то любые отклонения от предположений могут повлиять на оценки.
Если наблюдаемая выборка действительно принадлежит тому закону распределения, параметры которого мы оцениваем, отклонения могут быть связаны с наличием
аномальных наблюдений, появление которых в выборке определяется самыми различными причинами. Если не учитывать наличие аномальных наблюдений, попытки оценивания параметров распределения могут привести к самым негативным результатам. В этом случае обычно отбраковывают аномальные величины, а затем находят оценки параметров. К сожалению, реализовать отбраковку наблюдений в общем случае оказывается совсем не просто. Наблюдения, аномальные с позиций одного закона распределения, являются естественным проявлением закономерностей другого. Если нет надежной процедуры отбраковки или практических соображений, связанных с сущностью наблюдаемой величины, пытаются выйти из положения одним из следующих способов. В первом случае усекают выборку, отбрасывая определенную часть минимальных и/или максимальных наблюдений, и по оставшейся части оценивают параметры распределения. Во втором - перед процедурой оценивания всем наблюдениям левее и/или правее определенных значений присваивают одинаковые значения. Обе эти процедуры могут не всегда приводить к положительным результатам. Третий подход заключается в цензурировании выборки. Для наблюдений, попавших левее и/или правее определенных значений, фиксируют лишь факт попадания в соответствующий интервал, опуская конкретные значения этих наблюдений. По такой цензурированной выборке оценивают параметры закона.
В работе доказано, что процедура предварительного группирования наблюдений перед вычислением оценок параметров распределения позволяет резко снизить влияние аномальных наблюдений, а иногда практически исключить последствия присутствия их в выборке. При этом также снижается влияние на оценки параметров и отклонение вида наблюдаемого закона распределения от предполагаемого. Кроме того, группирование исходных наблюдений позволяет получать устойчивые оценки параметров.
Построение эмпирического распределения. Для построения эмпирического распределения будем использовать одну из двух сформированных ранее выборок. Груп-
ЛЕСНОЙ ВЕСТНИК 2/2008
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
пирование наблюдений используется как при оценке параметров распределений, в задачах проверки статистических гипотез, так и для построения эмпирического распределения.
Выборка называется группированной, если область определения случайной величины разбита на к непересекающихся интервалов граничными точками х0 < *1 < ... < <
х где *0 - нижняя грань области определения случайной величины X, хк - верхняя грань области определения случайной величины X, и зафиксированы количества наблюдений п, попавших в i-ый интервал значений. Объем выборки определяется соотношением
Существуют различные способы объединения данных в группы. При группировании область определения случайной величины разбивается на интервалы равной длины или равной вероятности, кроме того существует еще так называемое асимптотически оптимальное группирование. Нахождение х. граничных точек интервалов в этом случае связано с вычислением интегралов вида
P(e)=] f (х,в)л,
которые не всегда имеют аналитическое решение, здесь e - скалярный или векторный параметр распределения, функция P(e) - вероятность попадания наблюдаемой величины в i-й интервал, f(x, e) - плотность распределения.
В данной работе в качестве способа группировки выбрано разбиение области определения объема продаж на интервалы равной длины. Величину интервала b для группировки исходных данных определим по формуле
Xmin) / 0} - 1),
где х - х - максимальные и минимальные
значения;
{n} - округленное оптимальное число групп, определяемое по формуле Стерджесса n = 1 + 3,322lg(N);
N - объем выборки.
Нижняя граница первого интервала соответствует минимальному значению объема продаж за рассматриваемый период, правая граница последнего интерва-
ла - максимальному значение объема продаж. Относительная частота попадания переменной в интервал определяется по формуле
где ni - количество исходных значений, попавших в i-й интервал.
Графическое изображение эмпирических данных в виде гистограммы относительных частот - удобный и наглядный способ представления выборки, необходимый для первичного формирования гипотезы о законе распределения генеральной совокупности. При построении графика по оси абсцисс (OX) отложим значения середины интервалов объема продаж, а соответствующие им значения относительных частот - по оси ординат (OF). На рис. 1 приведен график эмпирических относительных частот, представленных в виде гистограммы.
Оценка параметров эмпирического распределения. Визуальный анализ графика показывает, что эмпирическое распределение является унимодальным и несимметричным. Для более детального описания воспользуемся надстройкой «Пакет анализа» «Описательная статистика» MS Excel. Результаты расчета приведены в таблице.
Средняя арифметическая - наиболее часто используемый показатель центра распределения, в нашем случае равна 17313,18. Вычисление средней X в программе осуществляется по формуле, совпадающей с формулой оценки математического ожидания методом моментов. Следовательно, в качестве оценки математического ожидания в начальном приближении можно использовать значение д = 17313,8. Оценка дисперсии, выполненная Пакетом анализа, дает значение D = 11631522,29.
Мода (Мо) - это наиболее часто встречающееся значение признака, или значение варианты с наибольшей частотой.
Медианой (Me) является значение варианты, находящейся в центре упорядоченной по возрастанию значений признака совокупности. Медиана делит вариационный ряд на две равные части. При этом 50 % единиц совокупности имеют значение меньше медианного, а 50 % - больше медианного.
ЛЕСНОЙ ВЕСТНИК 2/2008
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
Объем продаж, USD
I I эмпирическая относительная частота й теоретическое гамма-распределение -♦ - теоретическое нормальное распределение
Рис. 1. Гистограмма относительных частот и теоретические функции плотности вероятности
Месячный объем продаж, USD
Среднее 17313,18
Стандартная ошибка 363,56
Медиана 16539
Стандартное отклонение 3410,50
Дисперсия выборки 11631522,29
Эксцесс 0,46
Асимметрично сть 0,71
Интервал 16988
Минимум 10801
Максимум 27789
Сумма 1523560
В нашем случае значение моды равно 16802, а значение медианы - 16539.
Для симметричного распределения значения средней, медианы и моды должны совпадать. В нашем же случае они различны. Таким образом, можно предположить, что искомое распределение несимметрично.
Чтобы в этом убедиться, надо определить, есть ли смещения в рассеянии данных. Индикатором этих смещений является скошенность данных или, по-другому, асимметрия As - показатель симметрии распределения. В случае положительной асимметрии распределение имеет длинную правую ветвь. Средняя величина больше медианы. Отрицательная асимметрия проявляется в виде более длинной левой ветви, а величина средней меньше медианы и моды. В случае симмет-
ричного распределения, например нормального, As = 0. При этом следует учитывать значимость коэффициента асимметрии. Если выполняется неравенство
|As| / ° < 3
ш \(n+1)(n+3) ’
n - количество наблюдений, то асимметричность считается несущественной.
Коэффициент асимметрии, рассчитанный в «Описательной статистике», равен 0,71, а значение параметра = 0,26. Следовательно, в нашем случае \ASI / = 2,73 < 3,
и асимметрией при подборе теоретического распределения объема продаж за месяц можно пренебречь. Параметры, полученные на основе эмпирических данных, могут быть использованы как начальные приближения при построении вероятностной модели.
Построение математической модели. Для исследуемой экономической системы построение модели, как правило, включает два этапа. На первом этапе высказываются предположения о виде модели закона распределения и по выборкам, извлекаемым из генеральной совокупности, оцениваются параметры этой модели. На втором этапе адекватность модели наблюдаемым данным проверяется с использованием критериев согласия типа Пирсона, типа Колмогорова, типа Мизеса и других. В статистике этим этапам соответствует основные типы задач: идентификация закона распределения и проверка статистических гипотез, оценивание параметров распределения.
Под задачей идентификации закона распределения наблюдаемой случайной величины, как правило, понимают задачу выбора такой модели закона распределения вероятностей, которая наилучшим образом соответствует результатам наблюдения.
Визуальный анализ гистограммы относительных частот (рис. 1) позволяет сделать предположение о том, что вероятностная модель может быть представлена в виде нормального или гамма-распределения. Для построения кривых теоретических законов распределения найдем оценку параметров нормального и гамма-распределений, исполь-
ЛЕСНОЙ ВЕСТНИК 2/2008
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
зуя вторую из двух сформированных ранее выборок.
Среди всего множества различных оценок параметров модели можно выделить три основных класса оценок . Это M-оценки, к которым относятся, например, оценки максимального правдоподобия и наименьших квадратов, L-оценки, формирующиеся как линейные комбинации порядковых статистик, и R-оценки, основанные на использовании ранговых критериев. Еще один класс оценок образуют методы, минимизирующие расстояния (MD-оценки).
Определяющими факторами при выборе метода оценивания являются структура представления наблюдаемых данных и качество оценок. Качество оценок определяется такими свойствами, как несмещенность, состоятельность и асимптотическая эффективность. Вместе с тем, оценки должны быть устойчивыми к малым отклонениям от предположений.
Если последовательность независимых одинаково распределенных случайных величин xp..., xN имеет функцию распределения F(x, 9) и функцию плотности fx,9), то оценкой максимального правдоподобия (ОМП) неизвестного векторного или скалярного параметра 9 по группированным наблюдениям называется такое значение параметра, при котором функция правдоподобия
достигает максимума на множестве возможных значений параметра. Вероятность попадания наблюдения в i-ый интервал значений определяется выражением
Р (е)= J f (x,e)dx.
Для вычисления ОМП дифференцируют функцию правдоподобия по 01 и, приравнивая производные нулю, получают систему уравнений правдоподобия
решая которые находят искомые оценки параметров, здесь m - размерность вектора параметров.
Закон гамма-распределения имеет функцию плотности вероятности
Р“- Г (а) где Г(а)- гамма функция.
Векторный параметр гамма распределения 0 = (а, в), при этом связь с оценками математического ожидания и дисперсии осуществляется по формулам
д = а-р, D = а-р2.
Для нормального распределения 0 = (д, а), где a=4D - среднеквадратичное отклонение. Плотность вероятности нормального закона распределения вероятности задается формулой
Функция правдоподобия для нормального распределения имеет вид
Продифференцировав функцию правдоподобия по параметрам д, а, приравняв получившиеся уравнения к нулю и выразив значения д, D, получим, что искомые оценки параметров нормального распределения, осуществленные по методу максимума правдоподобия, совпадают с оценками, выполненными по методу моментов.
д=x=NZxi D=N_1,^(x" _ x) ■
Значения математического ожидания и дисперсии в этом случае равны соответственно
д = 17313, D = 11631522. (1)
Для гамма-распределения ОМП параметров а, р находятся аналогичным способом с дифференциацией соответствующей функции правдоподобия. В этом случае система уравнений для определения оценок параметров а, р имеет вид
1 N dlnГ(0) , n л
Zlnx.----------lnP = 0 .
Данная система была решена численными методами, в результате чего получились следующие значения параметров
а = 25,8; р = 671,8. (2)
ЛЕСНОЙ ВЕСТНИК 2/2008
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
Метод максимального правдоподобия, в отличие от других, позволяет определять оценки максимального правдоподобия параметров по негруппированным, частично группированным и группированным данным, т.е. дает возможность исследователю самому определять, в каком виде хранить эмпирическую информацию. Этот метод при соответствующих условиях регулярности дает состоятельные и асимптотически эффективные оценки. Кроме того, применение метода максимального правдоподобия регламентировано в Рекомендациях по стандартизации при проверке согласованности опытного распределения с теоретическим.
Используя оценки параметров распределения (1) и (2), полученные по выборке из генеральной совокупности в предыдущем пункте, на графике относительных частот построим теоретические законы распределения вероятностей. На рис. 1 кривая, соответствующая нормальному закону распределения, изображена в виде пунктирной линии, закон гамма-распределения представлен сплошной линией. Из графика видно, что эти два закона достаточно хорошо аппроксимируют эмпирический закон распределения, однако для принятия решения о виде распределения необходимо решить задачу идентификации закона распределения.
Для этого, опираясь на предыдущий анализ эмпирических данных, сформулируем гипотезу H0: F(x) = F(x, 9), где 9 - оценки (2) параметров гамма-распределения, рассчитанные по второй выборке методом максимума правдоподобия. В этом случае проверяемая гипотеза является простой в отличие от сложной гипотезы, в которой помимо проверки вида распределения необходимо еще производить оценивание параметром.
В случае простых гипотез для проверки согласия теоретического и эмпирического законов распределения применяются критерии согласия, такие как Колмогорова, Смирнова, ш2 и Q2 Мизеса, которые не зависят от вида наблюдаемого закона распределения F(x, 9) и, в частности, от его параметров 9. В этом случае при проверке согласия опытного распределения с теоретическим распределением случайной величины X действуют
в соответствии алгоритмом, представленным ниже:
1. Формулируют проверяемую гипотезу, выбирая теоретическое распределение случайной величины, согласие которого с опытным распределением этой величины следует проверить.
2. Из совокупности отбирают случайную выборку объема N. Полученные результаты наблюдений располагают в порядке их возрастания, так что в распоряжении имеют упорядоченную выборку значений.
3. В соответствии с выбранным критерием проверки вычисляют значение статистики S* критерия (статистику Колмогорова, Смирнова, ш2 и Q2 Мизеса).
4. В соответствии с выбранным критерием проверки вычисляют значение
p(> SS >7 g (Ho yis =1-G(? Ho),
где G(S\H0) - распределение статистики критерия при справедливости гипотезы
g(s|H0) - условная плотность распределения статистики критерия при справедливости гипотезы.
Если выполняется неравенство
p{S > S*} > a,
где a = J g(s|H0)ds
Задаваемый уровень значимости (вероятность ошибки 1-го рода - отклонить справедливую гипотезу H0), то нет оснований для отклонения проверяемой гипотезы. В противном случае проверяемая гипотеза H0 отвергается.
В критерии Колмогорова в качестве расстояния между эмпирическим и теоретическим законом используется величина
dn = sup|FN (x)-F (x,e), (3)
где FN(x) - эмпирическая функция распределения;
F(x, 9) - теоретическая функция распределения;
N - объем выборки.
При проверке гипотез обычно используется статистика вида
S = S = 6" N6^DNN +1, D„ = max(D+N, Dn),
ЛЕСНОЙ ВЕСТНИК 2/2008
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
F(x ,e), D-=f^iiN iF (xi,e)-
где N - объем выборки;
xp..., xN - упорядоченные по возрастанию выборочные значения;
F(x) - функция закона распределения, согласие с которым проверяется.
Распределение величины Sk при простой гипотезе в пределе подчиняется закону Колмогорова K(S) .
Для проверки согласия двух распределений воспользуемся статистикой Колмогорова. Выберем уровень значимости a = 0,05, рассчитаем значение статистики Колмогорова для нашей задачи и величину расстояния между эмпирическим и теоретическим законом (3). В нашем случае оказалось, что теоретическое гамма-распределение согласуется с экспериментальными данными.
Повторяя вышеизложенные расчеты для нормального распределения, получаем, что нормальное распределение также хорошо согласуется с опытными данными. Следовательно, на основании выбранного критерия проверки Колмогорова два теоретических закона распределения - нормальный и гамма - могут быть использованы для построения прогнозной модели.
Прогноз объема продаж
- ♦ - нормальное распределение USD -*- гамма-распределение
Рис. 2. Интегральные функции вероятности гамма- и нормального распределения
Результаты моделирования. Для
построения прогноза объема продаж дополнительных услуг сотовой связи необходимо рассчитать значения интегральных функций
найденных выше теоретических законов нормального и гамма-распределения вероятностей с оцененными параметрами (1) и (2) этих распределений. График, построенный на рис. 2, позволяет спрогнозировать будущее значение месячного объема продаж с заданной вероятностью. Так, с 95 % вероятностью можно утверждать, что объем продаж в следующем месяце составит 11745 USD. При этом относительная погрешность прогноза в зависимости от выбора модели нормального или гамма-распределения в этом случае не превышает одного процента.
Для дальнейшего исследования модели прогнозирования объема продаж дополнительных услуг представляется целесообразным формулировать две конкурирующие гипотезы: H0: F(x) = F(x, e) - о соответствии эмпирических данных гамма-распределению и альтернативную ей H1: F(x) = F1(x, Э) - о нормальном распределении наблюдаемых величин, и рассчитывать вероятность в ошибки 2-го рода, т.е вероятность ошибочного принятия гипотезы H0, в то время как верна гипотеза Н1. При этом чем больше мощность критерия 1-в, тем лучше он различает соответствующие гипотезы.
Напоследок следует заметить, что в дальнейшем построенную вероятностную модель объема продаж можно улучшить, если идентификацию закона проводить с использованием ряда критериев согласия. Это связано в первую очередь с тем, что в непараметрических критериях проверки согласия опытного и теоретического распределений типа Колмогорова, типа Мизеса, типа Смирнова, и в критериях согласия типа хи-квадрат используются различные меры, поэтому критерии по-разному улавливают в выборках различные отклонения от предполагаемых теоретических законов. В этом случае окончательное решение может быть принято по совокупности критериев, когда выбирается модель, для которой достигаемый уровень значимости по всем критериям максимален.
Кроме того, при идентификации планируется рассматривать более широкое множество законов распределения, в том числе модели в виде смесей законов. В этом случае для любого эмпирического распределения можно построить адекватную, статистически
ЛЕСНОИ ВЕСТНИК 2/2008
В процессе финансового прогнозирования для расчета финансовых показателей используются такие специфические методы, как математическое моделирование, эконометрическое прогнозирование, экспертные оценки, построение трендов и составление сценариев, стохастические методы.
Математическое моделирование
позволяет учесть множество взаимосвязанных факторов, влияющих на показатели финансового прогноза, выбрать из нескольких вариантов проекта прогноза наиболее соответствующий принятой концепции производственного, социально-экономического развития и целям финансовой политики.
Эконометрическое прогнозирование
основано на принципах экономической теории и статистики: расчет показателей прогноза осуществляется на основе статистических оценочных коэффициентов при одной или нескольких экономических переменных, выступающих в качестве прогнозных факторов; позволяет рассмотреть одновременное изменение нескольких переменных, влияющих на показатели финансового прогноза. Эконометрические модели описывают с определенной степенью вероятности динамику показателей в зависимости от изменения факторов, влияющих на финансовые процессы. При построении эконометрических моделей используется математический аппарат регрессионного анализа, который дает количественные оценки усредненных взаимосвязей и пропорций, сложившихся в экономике в течение базисного периода. Для получения наиболее надежных результатов экономико-математические методы дополняются экспертными оценками.
Метод экспертных оценок
предполагает обобщение и математическую обработку оценок специалистов-экспертов по определенному вопросу. Эффективность этого метода зависит от профессионализма и компетентности экспертов. Такое прогнозирование может быть достаточно точным, однако экспертные оценки носят субъективный характер, зависят от «ощущений» эксперта и не всегда поддаются рациональному объяснению.
Трендовый метод
, предполагающий зависимость некоторых групп доходов и расходов лишь от фактора времени, исходит из постоянных темпов изменений (тренд постоянных темпов роста) или постоянных абсолютных изменений (линейный временной тренд). Недостатком данного метода является игнорирование экономических, демографических и других факторов.
Разработка сценариев
не всегда исходит из научности и объективности, в них всегда ощущается влияние политических предпочтений, предпочтений отдельных должностных лиц, инвесторов, собственников, но это позволяет оценить последствия реализации тех или иных политических обещаний.
Стохастические методы
предполагают вероятностный характер как прогноза, так и связи между используемыми данными и прогнозными финансовыми показателями. Вероятность расчета точного финансового прогноза определяется объемом эмпирических данных, используемых при прогнозировании.
Таким образом, методы финансового прогнозирования различаются по затратам и объемам предоставляемой итоговой информации: чем сложнее метод прогнозирования, тем больше связанные с ним затраты и объемы получаемой с его помощью информации.
Точность прогнозов
Основными критериями при оценке эффективности модели, используемой в прогнозировании, служат точность прогноза и полнота представления будущего финансового состояния прогнозируемого объекта. Вопрос с точностью прогноза несколько более сложен и требует более пристального внимания. Точность или ошибка прогноза - это разница между прогнозным и фактическим значениями. В каждой конкретной модели эта величина зависит от ряда факторов.
Чрезвычайно важную роль играют исторические данные, используемые при выработке модели прогнозирования. В идеале желательно иметь большое количество данных за значительный период времени. Кроме того, используемые данные должны быть "типичными" с точки зрения ситуации. Стохастические методы прогнозирования, использующие аппарат математической статистики, предъявляют к историческим данным вполне конкретные требования, в случае невыполнения которых не может быть гарантирована точность прогнозирования. Данные должны быть достоверны, сопоставимы, достаточно представительны для проявления закономерности, однородны и устойчивы.
Точность прогноза однозначно зависит от правильности выбора метода прогнозирования в том или ином конкретном случае. Однако это не означает, что в каждом случае применима только какая-нибудь одна модель. Вполне возможно, что в ряде случаев несколько различных моделей выдадут относительно надежные оценки. Основным элементом в любой модели прогнозирования является тренд или линия основной тенденции изменения ряда. В большинстве моделей предполагается, что тренд является линейным, однако такое предположение не всегда закономерно и может отрицательно повлиять на точность прогноза. На точность прогноза также влияет используемый метод отделения от тренда сезонных колебаний - сложения или умножения. При использовании методов регрессии крайне важно правильно выделить причинно-следственные связи между различными факторами и заложить эти соотношения в модель.
Прежде чем использовать модель для составления реальных прогнозов, ее необходимо проверить на объективность, с тем чтобы обеспечить точность прогнозов. Этого можно достичь двумя разными путями:
Результаты, полученные с помощью модели, сравниваются с фактическими значениями через какой-то промежуток времени, когда те появляются. Недостаток такого подхода состоит в том, что проверка "беспристрастности" модели может занять много времени, так как по-настоящему проверить модель можно только на продолжительном временном отрезке.
Модель строится исходя из усеченного набора имеющихся исторических данных. Оставшиеся данные можно использовать для сравнения с прогнозными показателями, полученными с помощью этой модели. Такого рода проверка более реалистична, так как она фактически моделирует прогнозную ситуацию. Недостаток этого метода состоит в том, что самые последние, а, следовательно, и наиболее значимые показатели исключены из процесса формирования исходной модели.
В свете вышесказанного относительно проверки модели становится ясным, что для того, чтобы уменьшить ожидаемые ошибки, придется вносить изменения в уже существующую модель. Такие изменения вносятся на протяжении всего периода применения модели в реальной жизни. Непрерывное внесение изменений возможно в том, что касается тренда, сезонных и циклических колебаний, а также любого используемого причинно-следственного соотношения. Эти изменения затем проверяются с помощью уже описанных методов. Таким образом, процесс оформления модели включает в себя несколько этапов: сбор данных, выработку исходной модели, проверку, уточнение - и опять все сначала на основе непрерывного сбора дополнительных данных с целью обеспечения надежности модели.
Различают три основных вида прогноза: технологический, экономический и прогноз объема продаж (спроса).
1
. Технологические прогнозы
охватывают уровень развития НТП или технологическое развитие в сферах, непосредственно влияющих на производство, в котором осуществляется прогноз. Например, предприятие, выпускающее компьютеры, интересует перспективы расширения объема памяти на дискетах, т.к. они являются дополнительной продукцией для использования компьютеров, а предприятие, использующее вредные, токсичные вещества в своем производстве, интересует разработка технологий по очистке и утилизации отходов.
Развитие НТП приводит к появлению новых товаров и услуг, а те, в свою очередь, составляют серьезную конкуренцию существующим предприятиям. Грамотно сделанный прогноз позволит сэкономить финансовые ресурсы, предскажет развитие новых технологий, даже если научно-технические изменения не повлияли на производство продукции.
2.
Экономический прогноз
позволяет предусмотреть будущее состояние экономики, процентные ставки и другие факторы, влияющие на развитие любого предприятия. От результатов экономического прогноза зависят такие решения как: расширение или сокращение производственных мощностей; заключение новых договоров; увольнение или наем рабочих и т.д.
3.
Представление о реальном уровне спроса
на продукцию предприятия на конкретный период в будущем дает прогноз объема продаж. Такой прогноз является основой для планирования и проведения экономических расчетов. На спрос влияют множество факторов, учет которых можно выявить с помощью составления прогноза объема продаж (спроса). В качестве базы для будущего прогноза используются такие показатели, как уровень спроса в предшествующем периоде, демографические изменения, изменения рыночных долей отраслевых организаций, динамику политической ситуации, интенсивность рекламы, конкурентов и др.
Виды прогнозов