Графическое изображение электростатического поля.

Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электро магнитного поля .

Что такое электрическое поле

После того как тело получило заряд, оно способно действовать на другие заряженные тела: притягивать тела с противоположным зарядом и отталкивать их, если они имеют такой же заряд.

Каким же образом происходит такое взаимодействие?

Зарядим металлический шарик, закреплённый на металлической подставке. Точно такой же по знаку заряд сообщим другому шарику из пенопласта, подвешенному на нити. Назовём его пробным. Перемещая его на разные расстояния , увидим, что нить с шариком отклоняется в любой точке пространства. Этот способ исследования называется методом пробного заряда .

Почему отклоняется пробный шарик?

Причина в том, что электрические заряды взаимодействуют друг с другом с помощью электрического поля , которое они создают в окружающем их пространстве. - это особый вид материи, с помощью которого это взаимодействие и происходит. Такое поле окружает каждый электрический заряд и действует на другие заряды с некоторой силой. Следовательно, электрическое поле – разновидность силового поля.

Характеризуется электрическое поле физической величиной, которую называют напряжённостью электрического поля . Это количественная характеристика , векторная величина. Она равна отношению силы, действующей на точечный заряд в данной точке поля, к величине этого заряда:

где - напряжённость электрического поля;

Сила, действующая на точечный заряд;

q – величина заряда.

Точечным называют заряженное тело, размеры которого настолько малы, что ими можно пренебречь по сравнению с расстоянием, на котором рассматривается воздействие этого заряда. Электрические поля, создаваемые такими зарядами, называют кулоновскими полями .

Силы, действующие на пробный заряд в разных точках электрического поля, отличаются по величине и направлению. Соответственно, различны и напряжённости в этих точках поля. Такое поле называют неоднородным .

Если модуль и направление напряжённости электрического поля одинаковы во всех его точках, то такое поле называется однородным .

Однородное поле создаётся в центре между двумя параллельными заряженными пластинами.

Электростатическое поле

Электрическое поле, созданное неподвижным и не меняющимся во времени зарядом, называется электростатическим полем .

Если электрическое поле образовано несколькими зарядами, то напряжённость в данной точке пространства равна сумме напряжённостей электрических полей, создаваемых в этой точке каждым зарядом в отдельности.

Графическое изображение электрического поля

Графически электрическое поле изображают с помощью силовых линий.

Силовая линия – это такая линия, касательная к которой в каждой её точке совпадает с направлением вектора напряжённости в этой точке.

Начинаются силовые линии на положительных зарядах или на бесконечности и заканчиваются на отрицательных, либо уходят в бесконечность. Они никогда не пересекаются и не касаются друг друга.

Силовые линии указывают направление действия силы, которая действует на положительно заряженную частицу со стороны электрического поля.

В общем эти линии имеют форму кривых . Но они могут быть и прямыми линиями в случае, если описывается поле одиночного точечного заряда .

Силовые линии положительного точечного заряда уходят в бесконечность.

Силовые линии отрицательного точечного заряда начинаются в бесконечности.

Совокупность двух точечных зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга, называется электрическим диполем . В целом электрический диполь нейтрален.

Вот так выглядят силовые линии электрического диполя.

А вот так располагаются силовые линии двух одинаковых по знаку электрических зарядов.

Электростатический потенциал

Другой величиной, характеризующей электростатическое поле, является электростатический потенциал (точечный потенциал) . Это скалярная величина, равная отношению потенциальной энергии взаимодействия электрического заряда с полем к величине этого заряда. Электростатический потенциал – это энергетическая характеристика электрического поля:

В вакууме электростатический потенциал точечного заряда определяют по формуле:

где q - величина заряда, r - расстояние от заряда-источника до точки, для которой рассчитывается потенциал;

Напряжённость электрического поля связана с его потенциалом следующим отношением:

Так как электрическое поле является потенциальным полем, то работа, совершаемая при перемещении заряда q из точки 1 в точку 2, равна:

A = W 1 – W 2 = qψ 1 – qψ 2 = q(ψ 1 – ψ 2)

Разность потенциалов ( ψ 1 – ψ 2) в электростатическом поле называется электрическим напряжением :

U = ( ψ 1 – ψ 2) = A/ q

Электрическое поле, созданное электрическими зарядами, называют потенциальным . Его силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Электрическое поле, возникшее за счёт электромагнитной индукции , называется вихревым . Силовые линии такого поля замкнуты. Существуют комбинации потенциальных и вихревых полей.

Электрическое поле является одной из составляющих электромагнитного поля. Оно возникает не только вокруг электрических зарядов, но и при изменении магнитного поля.

В свою очередь, магнитное поле появляется при изменении электрического поля или создаётся током заряженных частиц.

Изображение электростатического поля с помощью векторов напряженности в различ­ных точках поля является очень не­удобным, так как картина получается весьма за­путанной. Фарадей предложил более простой и нагляд­ный метод изображения электростати­ческого поля с помощью линий напряженнос­тей или силовых линий . Силовыми линиями называ­ются кривые, касательные к которым в каждой точке совпадают с направлением векто­ра напря­женности поля (рис.1.2). Направление силовой линии совпадает с направле­нием . Си­ловые линии начинаются на положительных зарядах и оканчиваются на отрицатель­ных. Силовые линии не пересекаются, так как в каждой точке поля век­торимеет лишь одно направление. Электростатическое поле считается однородным, если напряженность во всех его точках одинакова по величине и направлению. Силовыми линиями такого поля являются прямые, параллельные вектору напряженности.

Силовые линии поля точечных зарядов - ради­альные прямые, выходящие из заряда и уходящие в бесконечность, если он положителен (рис.1.3а). Если за­ряд отрицателен, направление силовых линий ока­зы­вается обратным: они начинаются в бесконечности и оканчиваются на заряде -q (рис.1.3б). Поле точечных зарядов обладает центральной симметрией.

Рис.1.3. Линии напряженности точечных зарядов: а - поло­жительного, б - отрицатель­ного.

На рис.1.3 изображены плоские сечения электро­статических полей системы двух одинаковых по ве­ли­чине зарядов: а) заряды, одинаковые по знаку, б) заряды, разные по знаку.

1. 5. Принцип суперпозиции электростатических полей.

Основной задачей электростатики является определение величины и направ­ле­ния вектора напряженности в каждой точке поля, создаваемого либо системой неподвижных точечных зарядов, либо заряженными поверхностями произвольной формы. Рассмотрим первый случай, когда поле создано системой зарядовq 1 , q 2 ,..., q n . Если в какую-либо точку этого поля поместить пробный заряд q 0 , то на него со стороны зарядов q 1 , q 2 ,..., q n будут действовать кулоновские силы . Со­гласно принципу независимости действия сил, рассмотренного в механике, равно­дей­ствующая силаравна их векторной сумме

.

Используя формулу напряженности электростатического поля, левую часть ра­венства можно записать: , где- напряженность результирующего поля, создаваемого всей системой зарядов в точке, где расположен пробный зарядq 0 . Пра­вую часть равенства соответственно можно записать , где- напря­женность поля, создаваемая одним зарядомq i . Равенство примет вид . Сокращая наq 0 , получим .

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, создаваемых каждым из этих зарядов в отдельности. В этом заключается принцип независимости действия электростатических полей или принцип суперпозиции (наложения) полей .

Обозначим через радиус-вектор, проведенный из точечного зарядаq i в ис­следуемую точку поля. Напряженность поля в ней от заряда q i равна . Тогда результирующая напряженность, создаваемая всей системой зарядов равна . Полученная формула применима и для расчета электростатических полей за­ря­женных тел произвольной формы так как любое тело можно разделить на очень малые части, каж­дую из которых можно считать точечным зарядомq i . Тогда расчет в любой точке пространства будет аналогичен выше приведенному.

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора E →). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности E → (рис. 4, а).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора E → (рис. 4, б). Силовым линиям приписывают направление, совпадающее с направлением вектора E → . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 5 приведены линии напряженности точечных зарядов (рис. 5, а, б); системы двух разноименных зарядов (рис. 5, а б Рис. 4 Рис. 5 в) − пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 5, г) − пример однородного электрического поля.

Теорема Остроградского–Гаусса и её применение.

Введем новую физическую величину , характеризующую электрическое поле – поток вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка , в пределах которой напряженность , т. е. электростатическое поле однородно. Произведение модуля вектора на площадь и на косинус угла между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 10.7):

где - проекция поля на направление нормали .

Рассмотрим теперь некоторую произвольную замкнутую поверхность . В случае замкнутой поверхности всегда выбирается внешняя нормаль к поверхности, т. е. нормаль, направленная наружу области.

Если разбить эту поверхность на малые площадки, определить элементарные потоки поля через эти площадки, а затем их просуммировать, то в результате мы получим поток вектора напряженности через замкнутую поверхность (рис. 10.8):

. (10.9)

Рис. 10.7
Рис. 10.8

Теорема Остроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности:

, (10.10)

где - алгебраическая сумма свободных зарядов, находящихся внутри поверхности , - объемная плотность свободных зарядов, занимающих объем .

Из теоремы Остроградского-Гаусса (10.10), (10.12) следует, что поток не зависит от формы замкнутой поверхности (сфера, цилиндр, куб и т.п.), а определяется только суммарным зарядом внутри этой поверхности.

Используя теорему Остроградского-Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией.

Пример использования теоремы Остроградского-Гаусса . Рассмотрим задачу о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса (тонкой бесконечной заряженной нити). Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Выберем замкнутую поверхность в виде цилиндра произвольного радиуса и длины , закрытого с обоих торцов (рис. 10.9)

Электрическое поле изображают с помощью электрических линий и следов эквипотенциальных поверхностей.

Поверхность, проведённая в пространстве так, что все её точки имеют одинаковый потенциал, называется эквипотенциальной .

Рисунок 1.7 – Неоднородное симметричное поле

Рисунок 1.8 – Неоднородное несимметричное поле

Рисунок 1.9 – Однородное несимметричное поле

Если вектор напряженности в каждой точке поля одинаков по величине и направлению то поле считается однородным .

Силовые линии магнитного поля (линии напряженности) проводятся так что:

2. Густота силовых линий отражает величину напряженности;

3. Проводятся так, чтобы вектор напряженности в каждой точке линии был направлен по касательной к ней.

Силовые линии это мысленные траектории движения пробного положительного заряда, внесенного в данную точку поля.

Следы эквипотенциальных поверхностей проводятся так, чтобы они пересекались с силовыми линиями под прямым углом, между каждыми двумя соседними эквипотенциальными поверхностями разность потенциалов одинакова.

1.3 Электропроводность веществ: проводники, диэлектрики, полупроводники

Почти в любом объёме любого вещества содержится некоторое количество свободных зарядов, их число в единице объёма называется концентрацией .

При отсутствии внешнего электрического поля свободные заряды совершают хаотическое тепловое движение, попадая в электрическое поле они приобретают скорость упорядоченного, направленного движения.

Упорядоченное направленное движение зарядов под действием сил внешнего электрического поля называется электрическим током .

Способность веществ, проводить электрический ток называется электропроводностью .

В зависимости от электропроводности все вещества делят на три группы:

1) Проводники – вещества, обладающие хорошей электропроводимостью, следовательно, хорошо проводящие электрический ток. Делятся на две подгруппы:

а) Первого рода – металлы и их сплавы. В них большое количество свободных электронов, которые под действием сил внешнего электрического поля приобретают скорость направленного движения, следовательно ток в проводника первого рода – это упорядоченное направленное движение электронов, а значит не сопровождается переносом вещества и химическими реакциями.

Проводник первого рода помещён в электростатическое поле, происходит явление электромагнитной индукции –мгновенное перемещение свободных зарядов к одной поверхности проводника. На этой поверхности возникает избыточный отрицательный заряд , недостаток электронов у противоположной поверхности создаёт избыточный положительный заряд, следовательно заряженные поверхности проводника создают собственное поле, направленное против внешнего и всегда его уравновешивающего. На этом основано экранирование – защита части пространства от внешних электрических полей.


б) Второго рода – это электролиты – водные растворы солей, кислот, щелочи, в них под действием растворителя (воды) происходит расход молекул на положительно и отрицательно заряженные ионы (электролитическая диссонация). Во внешнем электрическом поле ионы приобретают скорость направленного движения, значит ток в проводниках второго рода – это направленное движение ионов, а значит, сопровождается переносом вещества и химическими реакциями.

2) Диэлектрики – вещества, не имеющие свободных зарядов, а потому не способные проводить постоянный электрический ток. Делятся на две группы: неполярные и полярные диэлектрики .

У неполярных диэлектриков электронные орбиты расположены так, что при отсутствии внешнего поля электрические центры «+» и « - » в одной точке атом не создаёт диполя. Во внешнем поле орбиты смещаются так, что электрические центры «+» и « - » в разных точках, образовалась диполь – два одинаковых по величине, но противоположных по знаку связанных заряда. Произошла поляризация диэлектрика – деформационная .

У полярных диэлектриков диполи существуют от природы без всякого внешнего поля, но ариентированны хаотически. Во внешнем поле диполи поворачиваются и выстраиваются вдоль линий внешнего поля, происходит поляризация, которая называется ориентационной .

Внутри любого поляризованного диэлектрика поле существует, но по сравнению со внешним оно ослаблено в E раз.

Постоянный электрический ток диэлектрики не проводят, а переменный ток проводят – направленное колебательное движение диполей под действием сил внешнего переменного электрического поля.

О том, что колебательные движения диполей можно назвать электрическим током говорит опыт Эйхенвольда.

При протягивании диэлектрика в месте AB происходит … временный поворот на 180° и это сопровождается возникновением магнитного поля , которое всегда сопутствует электрическому току.

Существуют:

Ток проводимости – упорядоченное направленное движение свободных зарядов под действием сил внешнего электрического поля (постоянный и переменный).

Ток смещения связанных зарядов (в диэлектрике) – колебательное движение диполей под действием сил внешнего переменного электрического поля

3) Полупроводники – вещества, занимающие промежуточное положение по электропроводимости между проводниками и диэлектриками. Ток в них это направленное движение свободных электронов и дырок, зависит от некоторых факторов (температура, освещённость, наличие примесей).

Электростатическое поле удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовая линия – это линия, в каждой точке которой касательная совпадает с направлением вектора напряженности (см. рис.). Силовым линиям придают направление стрелкой. Свойства силовых линий:

1 ) Силовые линии непрерывны. Они имеют начало и конец – начинаются на положительных и заканчиваются на отрицательных зарядах.

2 ) Силовые линии не могут пересекаться друг с другом, т.к. напряженность – это сила, а две силы в данной точке от одного заряда не могут быть.

3 ) Силовые линии проводят так, чтобы их количество через единичную перпендикулярную площадку было пропорционально величине напряженности.

4 ) Силовые линии «выходят» и «входят» всегда перпендикулярно поверхности тела.

5 ) Силовую линию не следует путать с траекторией движущегося заряда. Касательная к траектории совпадает с направлением скорости, а касательная к силовой линии – с силой и, следовательно, с ускорением.

Эквипотенциальной поверхностью называют поверхность, в каждой точке которой потенциал имеет одинаковое значение j = const.

Силовые линии всегда перпендикулярны эквипотенциальным поверхностям. Докажем это. Пусть вдоль эквипотенциальной поверхности перемещается точечный заряд q . Элементарная работа, совершаемая при этом равна dA=qE×cosa×dl = q×dj = 0, т.к. dj = 0. Поскольку q ,E и ×dl ¹ 0, следовательно

cosa = 0 и a = 90 о.

На рисунке изображено электростатическое поле двух одинаковых точечных зарядов. Линии со стрелками – это силовые линии, замкнутые кривые – эквипотенциальные поверхности. В центре осевой линии, соединяющей заряды напряженность равна 0. На очень большом расстоянии от зарядов эквипотенциальные поверхности становятся сферическими. .
На этом рисунке показано однородноеполе – это поле, в каждой точке которого вектор напряженности остается постоянным по величине и направлению Эквипотенциальные поверхности – это плоскости, перпендикулярные силовым линиям. Вектор напряженности всегда направлен в сторону убывания потенциала.

Принцип суперпозиции.

На основе опытных данных был получен принципа суперпозиции ( наложения ) полей: «Если электрическое поле создается несколькими зарядами, то напряженность и потенциал результирующего поля складываются независимо, т.е. не влияя друг на друга». При дискретном распределении зарядов напряженность результирующего поля равна векторной сумме, а потенциал алгебраической (с учетом знака) сумме полей, создаваемых каждым зарядом в отдельности. При непрерывном распределении заряда в теле векторные суммы заменяется на интегралы, где dE и dj – напряженность и потенциал поля элементарного (точечного) заряда, выделенного в теле. Математически принцип суперпозиции можно записать так.

В качестве примера получения выражения для напряженности поля с помощью принципа суперпозиции найдем напряженность поля тонкого стержня конечной длины , равномерно заряженного с линейной плотностью заряда t

Выберем бесконечно малый элемент dl стержня с зарядом dq . Поскольку напряженности от различных элементов направлены по-разному, введем оси проекций х и у . Итегрируя, найдем результирующие напряженности Е х и Е у .

dE - напряженность от элемента стержня dl с зарядом dq = t×dl , dE х и dE y – проекции dE на направления х и у .
Чтобы проинтегрировать, сведем к одной переменной a
длина дуги АС при малых углах, она же из треугольника ( А, С, dl )
модуль напряженности

Этот пример показывает, что вычисление напряженности полей представляет собой достаточно сложную задачу даже в нашем случае, когда мы не учитывали поле вблизи концов стержня.

Основной задачей электростатики является вычисление полей заряженных тел. Найти напряженность поля заряженного тела можно с помощью:

1) принципа суперпозиции - это сложная математическая задача, решаемая только в некоторых простых случаях или

2) теоремы Гаусса, которая упрощает расчеты, но только в случае бесконечной плоскости, бесконечной нити (цилиндра) или сфер и шаров (см. ниже).

Теорема Гаусса.

Сначала введем понятие « поток вектора » - это скалярная величина

(Н×м 2 /Кл = В×м) элементарный поток вектора напряженности Е , n – нормаль к площадке, dS – элементарная площадка – это такая малая площадка, в пределах которой Е = const; Е n – проекция вектора Е на направление нормали n
поток вектора напряженности через конечную площадку S
-²- -²- -²-через замкнутую поверхность S
просмотров