Что такое число pi. Краткая история числа пи

Увлеченные математикой люди по всему миру ежегодно съедают по кусочку пирога четырнадцатого марта - ведь это день числа Пи, самого известного иррационального числа. Эта дата напрямую связана с числом, первые цифры которого 3,14. Пи - это соотношение длины окружности к диаметру. Так как оно иррациональное, записать его в виде дроби невозможно. Это бесконечно длинное число . Его обнаружили тысячи лет назад и с тех пор постоянно изучают, но остались ли у Пи какие-нибудь секреты? От древнего происхождения до неопределенного будущего вот несколько наиболее интересных фактов о числе Пи.

Запоминание Пи

Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр - он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр - этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

Существует язык Пи

Увлеченные литературой математики изобрели диалект, в котором число букв во всех словах соответствует цифрам Пи в точном порядке. Писатель Майк Кит даже написал книгу Not a Wake, которая полностью создана на языке Пи. Энтузиасты такого творчества пишут свои произведения в полном соответствии количества букв значению цифр. Это не имеет никакого прикладного применения, но является достаточно распространенным и известным явлением в кругах увлеченных ученых.

Экспоненциальный рост

Пи - это бесконечное число, поэтому люди по определению не смогут никогда установить точные цифры этого числа. Однако количество цифр после запятой сильно увеличилось со времен первого использования Пи. Еще вавилоняне им пользовались, но им было достаточно дроби в три целых и одну восьмую. Китайцы и создатели Ветхого Завета и вовсе ограничивались тройкой. К 1665 году сэр Исаак Ньютон вычислил 16 цифр Пи. К 1719 году французский математик Том Фанте де Ланьи вычислил 127 цифр. Появление компьютеров радикальным образом улучшило знания человека о Пи. С 1949 года по 1967-й количество известных человеку цифр стремительно выросло с 2037 до 500 000. Не так давно Петер Труэб, ученый из Швейцарии, смог вычислить 2,24 триллиона цифр Пи! На это потребовалось 105 дней. Разумеется, это не предел. Вполне вероятно, что с развитием технологий будет возможно установить еще более точную цифру - так как Пи бесконечно, предела точности просто не существует, и ограничить ее могут лишь технические особенности вычислительной техники.

Вычисление Пи вручную

Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику - вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш. Минус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.

Открытие Пи

Древние вавилоняне знали о существовании числа Пи уже четыре тысячи лет назад. Вавилонские таблички исчисляют Пи как 3,125, а в египетском математическом папирусе встречается число 3,1605. В Библии число Пи дается в устаревшей длине - в локтях, а греческий математик Архимед использовал для описания Пи теорему Пифагора, геометрическое соотношение длины сторон треугольника и площади фигур внутри и снаружи кругов. Таким образом, можно с уверенностью сказать, что Пи является одним из наиболее древних математических понятий , хоть точное название данного числа и появилось относительно недавно.

Новый взгляд на Пи

Еще до того, как число Пи стали соотносить с окружностями, у математиков уже было множество способов даже для наименования этого числа. К примеру, в старинных учебниках по математике можно найти фразу на латыни, которую можно грубо перевести как «количество, которое показывает длину, когда на него умножается диаметр». Иррациональное число прославилось тогда, когда швейцарский ученый Леонард Эйлер использовал его в своих трудах по тригонометрии в 1737 году. Тем не менее греческий символ для Пи все еще не использовали - это произошло только в книге менее известного математика Уильяма Джонса. Он использовал его уже в 1706 году, но это долго оставалось без внимания. Со временем ученые приняли такое наименование, и теперь это наиболее известная версия названия, хотя прежде его называли также лудольфовым числом.

Нормальное ли число Пи?

Число Пи определенно странное, но насколько оно подчиняется нормальным математическим законам? Ученые уже разрешили многие вопросы, связанные с этим иррациональным числом, но некоторые загадки остаются. К примеру, неизвестно, насколько часто используются все цифры - цифры от 0 до 9 должны использоваться в равной пропорции. Впрочем, по первым триллионам цифр статистика прослеживается, но из-за того, что число бесконечное, доказать точно ничего невозможно. Есть и другие проблемы, которые пока ускользают от ученых. Вполне возможно, что дальнейшее развитие науки поможет пролить на них свет, но на данный момент это остается за пределами человеческого интеллекта.

Пи звучит божественно

Ученые не могут ответить на некоторые вопросы о числе Пи, тем не менее с каждым годом они все лучше понимают его суть. Уже в восемнадцатом веке была доказана иррациональность этого числа. Кроме того, было доказано, что число является трансцендентным. Это означает, что нет определенной формулы, которая позволила бы подсчитать Пи с помощью рациональных чисел.

Недовольство числом Пи

Многие математики просто влюблены в Пи, но есть и те, кто считает, что у этих цифр нет особенной значимости. Кроме того, они уверяют, что число Тау, которое в два раза больше Пи, более удобное в использовании как иррациональное. Тау показывает связь длины окружности и радиуса, что, по мнению некоторых, представляет более логичный метод исчисления. Впрочем, однозначно определить что-либо в данном вопросе невозможно, и у одного и у другого числа всегда будут сторонники, оба метода имеют право на жизнь, так что это просто интересный факт , а не повод думать, что пользоваться числом Пи не стоит.

ЧИСЛО ПИ
Символ ПИ означает отношение длины окружности к ее диаметру. Впервые в этом смысле символ p был использован У. Джонсом в 1707, а Л. Эйлер, приняв это обозначение, ввел его в научный обиход. Еще в древности математикам было известно, что вычисление значения p и площади круга - задачи, тесно связанные между собой. Древние китайцы и древние евреи считали число p равным 3. Значение числа p, равное 3,1605, содержится в древнеегипетском папирусе писца Ахмеса (ок. 1650 до н. э.). Около 225 до н. э. Архимед, используя вписанный и описанный правильные 96-угольники, приближенно вычислил площадь круга с помощью метода, который привел к значению ПИ, заключенному между 31/7 и 310/71. Другое приближенное значение p, эквивалентное обычному десятичному представлению этого числа 3,1416, известно еще со 2 в. Л. ван Цейлен (1540-1610) вычислил значение ПИ с 32 десятичными знаками. К концу 17 в. новые методы математического анализа позволили вычислять значение p множеством различных способов . В 1593 Ф. Виет (1540-1603) вывел формулу

В 1665 Дж. Валлис (1616-1703) доказал, что


В 1658 У. Броункер нашел представление числа p в виде непрерывной дроби


Г.Лейбниц в 1673 опубликовал ряд


Ряды позволяют вычислять значение p с любым числом десятичных знаков. В последние годы с появлением электронных вычислительных машин значение p было найдено более чем с 10 000 знаков. С десятью знаками значение ПИ равно 3,1415926536. Как число, ПИ обладает некоторыми интересными свойствами. Например, его нельзя представить в виде отношения двух целых чисел или периодической десятичной дроби ; число ПИ трансцендентно, т.е. непредставимо в виде корня алгебраического уравнения с рациональными коэффициентами. Число ПИ входит во многие математические, физические и технические формулы, в том числе и не имеющие непосредственного отношения к площади круга или длине дуги окружности. Например, площадь эллипса A определяется формулой A = pab, где a и b - длины большой и малой полуосей.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ЧИСЛО ПИ" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число . Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках . Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

    ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. ( натуральное число , не… … Толковый словарь Ожегова

    ЧИСЛО «Е» (ЕХР), иррациональное число , служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число , бесконечная дробь, равная 2,7182818284590...., является пределом выражения (1/) при п, стремящемся к бесконечности. По сути,… … Научно-технический энциклопедический словарь

    Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество. небольшое число, несть числа, расти числом... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… … Словарь синонимов

Книги

  • Число имени. Тайны нумерологии. Выход из тела для ленивых. Учебник по экстрасенсорике (количество томов: 3)
  • Число имени. Новый взгляд на числа. Нумерология - путь познания (количество томов: 3) , Лоуренс Ширли. Число имени. Тайны нумерологии. Книга Ширли Б. Лоуренс является всесторонним исследованием древней эзотерической системы – нумерологии. Чтобы научиться использовать вибрации чисел для…
  • Число Пи - самая известная константа в математическом мире.
  • В эпизоде сериала Стар Трек «Волк в овчарне» Спок командует компьютеру из фольги «вычислить до последней цифры значение числа Пи».
  • Комик Джон Эванс однажды язвительно заметил: «Что Вы получите, если разделите окружность фонаря из тыквы с прорезанными отверстиями в виде глаза, носа и рта на его диаметр? Тыкву π!».
  • Учёные в романе Карла Сагана «Связь» пытались разгадать довольно точное значение числа Пи, чтобы найти скрытые сообщения от создателей человеческой расы и открыть людям доступ к "более глубоким уровням вселенских знаний".
  • Символ Пи (π) используется в математических формулах уже на протяжении 250 лет.
  • Во время знаменитого суда над О.Дж.Симпсоном возникли споры между адвокатом Робертом Бласиером и агентом ФБР о фактическом значении числа Пи. Задумано это всё было для того, чтобы выявить недостатки в уровне знаний агента госслужбы.
  • Мужской одеколон от компании Гивенчи, названный «Пи», предназначен для привлекательных и дальновидных людей.
  • Мы никогда не сможем с точностью измерить окружность или площадь круга, так как не знаем полное значение числа Пи. Данное «магическое число» является иррациональным, то есть его цифры вечно меняются в случайной последовательности.
  • В греческом («π» (piwas)) и английском («p») алфавитах этот символ располагается на 16 позиции.
  • В процессе измерений размеров Великой пирамиды в Гизе оказалось, что она имеет такое же соотношение высоты к периметру своего основания, как радиус окружности к ее длине, то есть 1/2π
  • В математике π определяется отношением длины окружности круга к его диаметру. Другими словами, π число раз диаметра круга равно его периметру.
  • Первые 144 цифры числа Пи после запятой заканчиваются цифрами 666, которые упоминаются в Библии как «число зверя».
  • Если рассчитать длину экватора Земли с использованием числа π с точностью до девятого знака, ошибка в расчетах составит около 6 мм.
  • В 1995 году Хирюки Гото смог воспроизвести по памяти 42 195 знаков числа Пи после запятой, и до сих пор считается действительным чемпионом в этой области.
  • Людольф ван Цейлен (род.1540 – ум.1610 гг.) провёл большую часть своей жизни над расчетами первых 36 цифр после запятой числа Пи (которые были назваными «цифрами Лудольфа»). Согласно легенде, эти цифры были выгравированы на его надгробной плите после смерти.
  • Уильям Шэнкс (род.1812-ум.1882 гг.) работал в течение многих лет, чтобы найти первые 707 цифры числа Пи. Как оказалось позже, он допустил ошибку в 527 разряде.
  • В 2002 году японский учёный просчитал 1,24 триллиона цифр в числе Пи с помощью мощного компьютера Hitachi SR 8000. В октябре 2011 года число π было рассчитано с точностью до 10.000.000.000 знаков после зяпятой
  • Так как 360 градусов в полном круге и число Пи тесно связаны, некоторые математики пришли в восторг, узнав, что цифры 3, 6 и 0 находится на триста пятьдесят девятом разряде после запятой в числе Пи.
  • Одно из первых упоминаний о числе Пи можно встретить в текстах египетского писца по имени Ахмес (около 1650 года до н. э.), известных сейчас как папирус Ахмеса (Ринда).
  • Люди изучают число π уже на протяжении 4000 лет.
  • В папирусе Ахмеса запечатлена первая попытка рассчитать число Пи по «квадратуре круга», которая заключалась в измерении диаметра круга по созданным внутри квадратам.
  • В 1888 году доктор по имени Эдвин Гудвин заявил, что он обладает «сверхъестественным значением» точной меры круга. Вскоре был предложен законопроект в парламенте, по принятию которого Эдвин мог бы опубликовать авторские права на свои математические результаты. Но этого так и не произошло - законопроект не стал законом, благодаря профессору математики в законодательном органе , которые доказал, что метод Эдвина привел к очередному неверному значению числа Пи.
  • Первый миллион знаков после запятой в числе Пи состоит из: 99959 нулей, 99758 единиц, 100026 двоек, 100229 троек, 100230 четвёрок, 100359 пятёрок, 99548 шестёрок, 99800 семёрок, 99985 восьмёрок и 100106 девяток.
  • День Пи отмечается 14 марта (выбран был по причине схожести с 3.14). Официальное празднование начинается в 1:59 после полудня, дабы соблюсти полное соответствии с 3/14|1:59. Альберт Эйнштейн родился в 3 марта 1879 года (3/14/1879) в Ульме (королевство Вюртемберг), Германия.
  • Значение первых чисел в числе Пи после впервые правильно рассчитал одни из величайших математиков древнего мира , Архимед из Сиракуз (род.287 – ум.212 г. до н. э.). Он представил это число в виде нескольких дробей По легенде, Архимед был настолько увлечён рассчетами, что не заметил, как римские солдаты взяли его родной город Сиракузы. Когда римский солдат подошел к нему, Архимед закричал по-гречески: «Не трогай моих кругов!». В ответ на это солдат заколол его мечом.
  • Точное значение числа Пи было получено китайской цивилизацией намного раньше, чем западной. Китайцы имели два преимущества по сравнению с большинством других стран мира: они использовали десятичную систему обозначения и символ нуля. Европейские математики как раз-таки наоборот не использовали символическое обозначение нуля в счетных системах до позднего средневековья, пока не вступили в контакт с индийскими и арабскими математиками.
  • Аль-Хорезми (основатель алгебры) упорно работал над расчетами числа Пи и добился первых четырёх чисел : 3,1416. Термин «алгоритм» происходит от имени этого великого среднеазиатского учёного, а из его текста Китаб аль-Джабер валь-Мукабала появилось слово «алгебра».
  • Древние математики пытались вычислить Пи, каждый раз вписывая полигоны с большим количеством сторон, которые намного теснее вписывались в площадь круга. Архимед использовал 96-угольник. Китайский математик Лю Хуэй вписал 192-угольник, и потом 3072-угольник. Цу Чун и его сыну удалось вместить многоугольник с 24576 сторонами
  • Уильям Джонс (род.1675 – ум.1749) ввел символ «π» в 1706 году, который позднее был популяризирован в математическом сообществе Леонардо Эйлером (род.1707 – ум.1783).
  • Символ Пи «π» стал использоваться в математике лишь в 1700-х годах, арабы изобрели десятичную систему в 1000 г., а знак равенства «=» появился в 1557 году.
  • Леонардо да Винчи (род.1452 – ум.1519) и художник Альбрехт Дюрер (род.1471 – ум.1528) имели небольшие наработки по «квадратуре круга», то есть владели приблизительным значением числа Пи.
  • Исаак Ньютон рассчитал число Пи до 16 знаков после запятой.
  • Некоторые учёные утверждают, что люди запрограммированы для нахождения закономерностей во всём, потому что только так они можем придать смысл всему миру и самим себе. И именно поэтому нас так привлекает "незакономерное" число Пи))
  • Число Пи также может упоминаться как «круговая постоянная», «архимедова константа» или «число Лудольфа».
  • В семнадцатом веке число Пи вышло за пределы круга и стало применяться в математических кривых, таких как арка и гипоциклоида. Произошло это после обнаружения, что в данных областях некоторые величины могут быть выражены через само число Пи. В двадцатом веке число Пи уже использовалось во многих математических областях, таких как теория чисел, вероятности и хаоса.
  • Первые шесть цифр числа Пи (314159) располагаются в обратном порядке, по крайней мере , шесть раз в числе первых 10 миллионов десятичных знаков после запятой.
  • Многие математики утверждают, что правильным будет такая формулировка: «круг - фигура с бесконечным количеством углов».
  • Тридцать девять знаков после запятой в числе Пи достаточно для вычисления длины окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью не более чем радиус атома водорода.
  • Платон (род. 427 – ум.348 гг. до н. э.) получил довольно точное значение числа Пи для своего времени: √ 2 + √ 3 = 3,146.

P.S. Меня зовут Александр. Это мой личный, независимый проект. Я очень рад, если Вам понравилась статья. Хотите помочь сайту? Просто посмотрите ниже рекламу, того что вы недавно искали.

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C 1 C 2
=
d 1 d 2 (1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π . Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π :

C = π d.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2π R.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

Откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

8 2
S = ( d )
9

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

Какое из двух числе больше 22/7 или 3.14 ?
- Они равны.
- Почему?
- Каждое из них равно π .
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: "переложите одну спичку так, чтобы равенство стало верным".

Решение будет таковым: нужно образовать "крышу" для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π .

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют "Архимедовым" числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π . В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

10 6336 14688 1
3 < < π < < 3
71 1 1 7
2017 4673
4 2

можно записать проще: 3,140 909 < π < 3,1 428 265...

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после запятой: 3,14... Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:
− Вот смотри, рельсы прямые, колеса круглые.
Откуда же стук?
− Как откуда? Колеса-то круглые, а площадь
круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π , это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

π D 2
S=π R 2 =
4

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 π R = π d,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

где D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

α
S = π R 2
360 ˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием "Пи". Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют "День числа Пи". К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

Число Пи - одно из самых популярных математических понятий. О нем пишут картины, снимают фильмы, его играют на музыкальных инструментах , ему посвящают стихи и праздники, его ищут и находят в священных текстах.

Кто открыл π?

Кто и когда впервые открыл число π, до сих пор остается загадкой. Известно, что строители древнего Вавилона уже вовсю пользовались им при проектировании. На клинописных табличках, которым тысячи лет, сохранились даже задачи, которые предлагали решить с помощью π. Правда, тогда считалось, что π равно трем. Об этом свидетельствует табличка, найденная в городе Сузы, в двухстах километрах от Вавилона, где число π указывалось как 3 1/8 .

В процессе вычислений π вавилонцы обнаружили, что радиус окружности в качестве хорды входит в нее шесть раз, и поделили круг на 360 градусов. А заодно сделали то же самое с орбитой солнца. Таким образом, они решили считать, что в году 360 дней.

В Древнем Египте π было равно 3,16.
В древней Индии – 3,088.
В Италии на рубеже эпох считали, что π равно 3,125.

В Античности самое раннее упоминание π относится к знаменитой задаче о квадратуре круга, то есть о невозможности при помощи циркуля и линейки построить квадрат, площадь которого равна площади определенной окружности. Архимед приравнивал π к дроби 22/7 .

Ближе всего к точному значению π подошли в Китае. Его вычислил в V веке н. э. знаменитый китайский астроном Цзу Чунь Чжи. Вычислялось π довольно просто. Надо было дважды написать нечетные числа : 11 33 55, а потом, разделив их пополам, поместить первое в знаменатель дроби, а второе – в числитель: 355/113 . Результат совпадает с современными вычислениями π вплоть до седьмого знака.

Почему π – π?

Сейчас даже школьники знают, что число π - математическая константа , равная отношению длины окружности к длине её диаметра и равняется π 3,1415926535 … и далее после запятой – до бесконечности.

Свое обозначение π число обрело сложным путем: сначала этой греческой буквой в 1647 году математик Оутрейд обозвал длину окружности. Он взял первую букву греческого слова περιφέρεια - «переферия». В 1706 году английский преподаватель Уильям Джонс в работе «Обозрение достижений математики» уже называл буквой π отношение длины окружности к ее диаметру. А закрепил название математик XVIII века Леонард Эйлер, перед авторитетом которого остальные склонили головы. Так π стало π.

Уникальность числа

Пи - поистине уникальное число.

1. Ученые считают, что количество знаков в числе π бесконечно. Их последовательность не повторяется. Более того, найти повторения не удастся никому и никогда. Так как число бесконечно, оно может заключать в себе абсолютно все, даже симфонию Рахманинова, Ветхий Завет, ваш номер телефона и год, в котором наступит Апокалипсис.

2. π связано с теорией хаоса. К такому выводу пришли ученые после создания вычислительной программы Бэйли, которая показала, что последовательность чисел в π абсолютно случайна, что соответствует теории.

3. Вычислить число до конца практически невозможно – это заняло бы слишком много времени.

4. π – иррациональное число, то есть его значение нельзя выразить дробью.

5. π – трансцедентное число. Его нельзя получить, произведя какие-либо алгебраические действия над целыми числами.

6. Тридцать девять знаков после запятой в числе π достаточно для того, что вычислить длину окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью в радиус атома водорода.

7. Число π связано с понятием «золотого сечения». В процессе измерений Великой пирамиды в Гизе археологи выяснили, что ее высота относится к длине ее основания, так же как радиус окружности - к ее длине.

Рекорды, связанные с π

В 2010 году сотрудник компании «Yahoo» математик Николас Чже смог вычислить в числе π два квадрильона знаков после запятой (2x10). На это ушло 23 дня, и математику понадобилось множество помощников, которые работали на тысячах компьютеров, объединенных по технологии рассеянных вычислений. Метод позволил произвести расчеты с такой феноменальной скоростью. Чтобы вычислить то же самое на одном компьютере, потребовалось бы больше 500 лет.

Для того, чтобы просто записать все это на бумаге, потребуется бумажная лента больше двух миллиардов километров длиной. Если развернуть такую запись, ее конец выйдет за пределы Солнечной системы.

Китаец Лю Чао установил рекорд по запоминанию последовательности цифр числа π. В течение 24 часов 4 минут Лю Чао назвал 67 890 знаков после запятой, не допустив ни одной ошибки.

У π много поклонников. Его воспроизводят на музыкальных инструментах, и оказывается, что «звучит» оно превосходно. Его запоминают и придумывают для этого различные приемы. Его ради забавы скачивают себе на компьютер и хвастаются друг перед другом, кто больше скачал. Ему ставят памятники. Например, такой памятник есть в Сиэтле. Он находится на ступенях перед зданием Музея искусств.

π используют в украшениях и в интерьере. Ему посвящают стихи, его ищут в святых книгах и на раскопках. Есть даже «Клуб π».
В лучших традициях π, числу посвящен не один, а целых два дня в году! В первый раз День π празднуют 14 марта. Поздравлять друг друга надо ровно в 1час, 59 минут, 26 секунд. Таким образом, дата и время соответствуют первым знакам числа- 3,1415926.

Во второй раз праздник π отмечают 22 июля. Этот день связывают с так называемым «приближенным π», который Архимед записывал дробью.
Обычно в этот день π студенты, школьники и ученые устраивают забавные флэш-мобы и акции. Математики, забавляясь, с помощью π вычисляют законы падающего бутерброда и дарят друг другу шуточные награды.
И между прочим, π в самом деле можно найти в святых книгах. Например, в Библии. И там число π равно… трем.

просмотров