Самое маленькое число в мире как называется. Самая большая цифра в мире

Корректно ответить на этот вопрос нельзя, поскольку числовой ряд не имеет верхнего предела. Так, к любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Так, например, числа и имеют собственные названия «единица» и «сто», а название числа уже составное («сто один»). Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем , должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и заодно узнать, насколько большие числа придумали математики.

«Короткая» и «длинная» шкала


История современной системы наименования больших чисел ведёт начало с середины XV века, когда в Италии стали пользоваться словами «миллион» (дословно - большая тысяча) для тысячи в квадрате, «бимиллион» для миллиона в квадрате и «тримиллион» для миллиона в кубе. Об этой системе мы знаем благодаря французскому математику Николя Шюке (Nicolas Chuquet, ок. 1450 – ок. 1500): в своём трактате «Наука о числах» (Triparty en la science des nombres, 1484) он развил эту идею, предложив дальше воспользоваться латинскими количественными числительными (см. таблицу), добавляя их к окончанию «-иллион». Так, «бимиллион» у Шюке превратился в биллион, «тримиллионом» в триллион, а миллион в четвёртой степени стал «квадриллионом».

В системе Шюке число , находившееся между миллионом и биллионом, не имело собственного названия и называлось просто «тысяча миллионов», аналогично называлось «тысяча биллионов», - «тысяча триллионов» и т.д. Это было не очень удобно, и в 1549 году французский писатель и учёный Жак Пелетье (Jacques Peletier du Mans, 1517–1582) предложил поименовать такие «промежуточные» числа при помощи тех же латинских префиксов, но окончания «-иллиард». Так, стало называться «миллиардом», - «биллиардом», - «триллиардом» и т.д.

Система Шюке-Пелетье постепенно стала популярна и ей стали пользоваться по всей Европе. Однако в XVII веке возникла неожиданная проблема. Оказалось, что некоторые учёные почему-то стали путаться и называть число не «миллиардом» или «тысячей миллионов», а «биллионом». Вскоре эта ошибка быстро распространилась, и возникла парадоксальная ситуация - «биллион» стал одновременно синонимом «миллиарда» () и «миллиона миллионов» ().

Эта путаница продолжалась достаточно долго и привела к тому, что в США создали свою систему наименования больших чисел. По американской системе названия чисел строятся так же, как в системе Шюке, - латинский префикс и окончание «иллион». Однако величины этих чисел отличаются. Если в системе Шюке названия с окончанием «иллион» получали числа, которые являлись степенями миллиона, то в американской системе окончание «-иллион» получили степени тысячи. То есть тысяча миллионов () стала называться «биллионом», () - «триллионом», () - «квадриллионом» и т.д.

Старая же система наименования больших чисел продолжала использоваться в консервативной Великобритании и стала во всём мире называться «британской», несмотря на то, что она была придумана французами Шюке и Пелетье. Однако в 1970-х годах Великобритания официально перешла на «американскую систему», что привело к тому, что называть одну систему американской, а другую британской стало как-то странно. В результате, сейчас американскую систему обычно называют «короткой шкалой», а британскую систему или систему Шюке-Пелетье - «длинной шкалой».

Чтобы не запутаться, подведём промежуточный итог:

Название числа Значение по «короткой шкале» Значение по «длинной шкале»
Миллион
Миллиард
Биллион
Биллиард -
Триллион
Триллиард -
Квадриллион
Квадриллиард -
Квинтиллион
Квинтиллиард -
Секстиллион
Секстиллиард -
Септиллион
Септиллиард -
Октиллион
Октиллиард -
Нониллион
Нониллиард -
Дециллион
Дециллиард -
Вигинтиллион
Вигинтиллиард -
Центиллион
Центиллиард -
Миллеиллион
Миллеиллиард -

Короткая шкала наименования используется сейчас в США, Великобритании, Канаде, Ирландии, Австралии, Бразилии и Пуэрто-Рико. В России, Дании, Турции и Болгарии также используется короткая шкала, за исключением того, что число называется не «биллион», а «миллиард». Длинная же шкала в настоящее время продолжает использоваться в большинстве остальных стран.

Любопытно, что у нас в стране окончательный переход к короткой шкале произошёл лишь во второй половине XX века. Так, например, ещё Яков Исидорович Перельман (1882–1942) в своей «Занимательной арифметике» упоминает параллельное существование в СССР двух шкал. Короткая шкала, согласно Перельману, использовалась в житейском обиходе и финансовых расчётах, а длинная - в научных книгах по астрономии и физике. Однако сейчас использовать в России длинную шкалу неправильно, хотя числа там получаются и большие.

Но вернемся к поиску самого большого числа. После дециллиона названия чисел получаются путём объединения приставок. Так получаются такие числа как ундециллион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион, новемдециллион и т.д. Однако эти названия нам уже не интересны, так как мы условились найти наибольшее число с собственным несоставным названием.

Если же мы обратимся к латинской грамматике, то обнаружим, что несоставных названий для чисел больше десяти у римлян было всего три: viginti - «двадцать», centum - «сто» и mille - «тысяча». Для чисел больше, чем «тысяча», собственных названий у римлян не имелось. Например, миллион () римляне называли «decies centena milia», то есть «десять раз по сотне тысяч». По правилу Шюке, эти три оставшихся латинских числительных дают нам такие названия для чисел как «вигинтиллион», «центиллион» и «миллеиллион».

Итак, мы выяснили, что по «короткой шкале» максимальное число, которое имеет собственное название и не является составным из меньших чисел - это «миллеиллион» (). Если бы в России была бы принята «длинная шкала» наименования чисел, то самым большим числом с собственным названием оказался бы «миллеиллиард» ().

Однако существуют названия и для ещё больших чисел.

Числа вне системы


Некоторые числа имеют собственное название, без какой-либо связи с системой наименования при помощи латинских префиксов. И таких чисел немало. Можно, к примеру, вспомнить число e, число «пи», дюжину, число зверя и пр. Однако так как нас сейчас интересуют большие числа, то рассмотрим лишь те числа с собственным несоставным названием, которые больше миллиона .

До XVII века на Руси применялась собственная система наименования чисел. Десятки тысяч назывались «тьмами», сотни тысяч - «легионами», миллионы - «леодрами», десятки миллионов - «воронами», а сотни миллионов - «колодами». Этот счёт до сотен миллионов назывался «малым счётом», а в некоторых рукописях авторами рассматривался и « великий счёт », в котором употреблялись те же названия для больших чисел, но уже с другим смыслом. Так, «тьма» означала уже не десять тысяч, а тысячу тысяч () , «легион» - тьму тем () ; «леодр» - легион легионов () , «ворон» - леодр леодров (). «Колодой» же в великом славянском счёте почему-то называли не «ворон воронов» () , а лишь десять «воронов», то есть (см. таблицу).

Название числа Значение в «малом счёте» Значение в «великом счёте» Обозначение
Тьма
Легион
Леодр
Ворон (вран)
Колода
Тьма тем

Число также имеет собственное название и придумал его девятилетний мальчик. А дело было так. В 1938 году американский математик Эдвард Кэснер (Edward Kasner, 1878–1955) гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта (Milton Sirott), предложил назвать это число «гуголом» (googol). В 1940 году Эдвард Кэснер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение», где и рассказал любителям математики о числе гугол. Еще более широкую известность гугол получил в конце 1990-х, благодаря названной в честь него поисковой машине Google.

Название для ещё большего числа, чем гугол, возникло в 1950 году благодаря отцу информатики Клоду Шеннону (Claude Elwood Shannon, 1916–2001). В своей статье «Программирование компьютера для игры в шахматы» он попытался оценить количество возможных вариантов шахматной игры . Согласно ему, каждая игра длится в среднем ходов и на каждом ходе игрок делает выбор в среднем из вариантов, что соответствует (примерно равное ) вариантам игры. Эта работа стала широко известной, и данное число стало называться «числом Шеннона».

В известном буддийском трактате Джайна-сутры, относящемся к 100 году до н.э., встречается число «асанкхейя» равное . Считается, что этому числу равно количество космических циклов, необходимых для обретения нирваны.

Девятилетний Милтон Сиротта вошёл в историю математики не только тем, что придумал число гугол, но и тем, что одновременно с ним предложил ещё одно число - «гуголплекс», которое равно в степени «гугол», то есть единице с гуголом нулей.

Ещё два числа, большие, чем гуголплекс, были предложены южноафриканским математиком Стэнли Скьюзом (Stanley Skewes, 1899–1988) при доказательстве гипотезы Римана. Первое число, которое позже стали называть «первым числом Скьюза», равно в степени в степени в степени , то есть . Однако «второе число Скьюза» ещё больше и составляет .

Очевидно, что чем больше в числе степеней в степенях, тем сложнее записывать числа и понимать их значение при чтении. Мало того, возможно придумать такие числа (и они, кстати, уже придуманы), когда степени степеней просто не помещаются на страницу. Да, что на страницу! Они не уместятся даже в книгу размером с всю Вселенную! В таком случае встаёт вопрос как же такие числа записывать. Проблема, к счастью, разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой, придумывал свой способ записи, что привело к существованию нескольких не связанных друг с другом способов для записи больших чисел - это нотации Кнута, Конвея, Штейнгауза и др. С некоторыми из них нам сейчас предстоит разобраться.

Иные нотации


В 1938 году, в тот же год, когда девятилетний Милтон Сиротта придумал числа гугол и гуголплекс, в Польше вышла книжка о занимательной математике «Математический калейдоскоп», написанная Гуго Штейнгаузом (Hugo Dionizy Steinhaus, 1887–1972). Эта книга стала очень популярной, выдержала множество изданий и была переведена на многие языки, в том числе на английский и русский. В ней Штейнгауз, обсуждая большие числа, предлагает простой способ их записи, используя три геометрические фигуры - треугольник, квадрат и круг:

« в треугольнике» означает «»,
« в квадрате» означает « в треугольниках»,
« в круге» означает « в квадратах».

Объясняя этот способ записи, Штейнгауз придумывает число «мега», равное в круге и показывает, что оно равно в «квадрате» или в треугольниках. Чтобы подсчитать его, надо возвести в степень , получившееся число возвести в степень , затем получившееся число возвести в степень получившегося числа и так далее всего возводить в степень раз. К примеру, калькулятор в MS Windows не может подсчитать из-за переполнения даже в двух треугольниках. Приблизительно же это огромное число составляет .

Определив число «мега», Штейнгауз предлагает уже читателям самостоятельно оценить другое число - «медзон», равное в круге. В другом издании книги Штейнгауз вместо медзона предлагает оценить ещё большее число - «мегистон», равное в круге. Вслед за Штейнгаузом я также порекомендую читателям на время оторваться от этого текста и самим попробовать записать эти числа при помощи обычных степеней, чтобы почувствовать их гигантскую величину.

Впрочем, есть названия и для больших чисел. Так, канадский математик Лео Мозер (Leo Moser, 1921–1970) доработал нотацию Штейнгауза, которая была ограничена тем, что, если бы потребовалось записать числа много большие мегистона, то возникли бы трудности и неудобства, так как пришлось бы рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков . Нотация Мозера выглядит так:

« треугольнике» = = ;
« в квадрате» = = « в треугольниках» = ;
« в пятиугольнике» = = « в квадратах» = ;
« в -угольнике» = = « в -угольниках» = .

Таким образом, по нотации Мозера штейнгаузовский «мега» записывается как , «медзон» как , а «мегистон» как . Кроме того, Лео Мозер предложил называть многоугольник с числом сторон равным меге - «мегагоном». И предложил число « в мегагоне», то есть . Это число стало известным как число Мозера или просто как «мозер».

Но даже и «мозер» не самое большое число . Итак, самым большим числом, когда-либо применявшимся в математическом доказательстве, является «число Грэма». Впервые это число было использовано американским математиком Рональдом Грэмом (Ronald Graham) в 1977 году при доказательстве одной оценки в теории Рамсея, а именно при подсчёте размерности определённых -мерных бихроматических гиперкубов. Известность же число Грэма получило лишь после рассказа о нём в вышедшей в 1989 году книге Мартина Гарднера «От мозаик Пенроуза к надёжным шифрам».

Чтобы объяснить, как велико число Грэма, придётся объяснить ещё один способ записи больших чисел, введённый Дональдом Кнутом в 1976 году. Американский профессор Дональд Кнут придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх.

Обычные арифметические операции - сложение, умножение и возведение в степень - естественным образом могут быть расширены в последовательность гипероператоров следующим образом.

Умножение натуральных чисел может быть определено через повторно производимую операцию сложения («сложить копий числа »):

Например,

Возведение числа в степень может быть определено как повторно производимая операция умножения («перемножить копий числа »), и в обозначениях Кнута эта запись выглядит как одиночная стрелочка, указывающая вверх:

Например,

Такая одиночная стрелка вверх использовалась в качестве значка степени в языке программирования Алгол.

Например,

Здесь и далее вычисление выражения всегда идёт справа налево, также и стрелочные операторы Кнута (как и операция возведение в степень) по определению обладают правой ассоциативностью (очерёдностью справа налево). Согласно данному определению,

Уже это приводит к довольно большим числам, но система обозначений на этом не заканчивается. Оператор «тройная стрелочка» используется для записи повторного возведения в степень оператора «двойная стрелочка» (также известного как «пентация»):

Затем оператора «четверная стрелочка»:

И т. д. Общее правило оператор «-я стрелочка», в соответствии с правой ассоциативностью, продолжается вправо в последовательную серию операторов « стрелочка». Символически это можно записать следующим образом,

Например:

Форма обозначения обычно используется для записи с стрелочками.

Некоторые числа настолько большие, что даже запись стрелочками Кнута становится слишком громоздкой; в этом случае использование оператора -стрелочка предпочтительней (и также для описания с изменяемым числом стрелочек), или эквивалентно, гипероператорам. Но некоторые числа настолько огромны, что даже подобная запись недостаточна. Например, число Грэма.

При использовании Стрелочной нотации Кнута число Грэма может быть записано как

Где количество стрелок в каждом слое, начиная с верхнего, определяется числом в следующем слое, то есть , где , где верхний индекс у стрелки показывает общее количество стрелок. Другими словами, вычисляется в шага: на первом шаге мы вычисляем с четырьмя стрелками между тройками, на втором - с стрелками между тройками, на третьем - с стрелками между тройками и так далее; в конце мы вычисляем с стрелок между тройками.

Это может быть записано как , где , где верхний индекс у означает итерации функций.

Если другим числам с «именами» можно подобрать соответствующее число объектов (например, количество звезд в видимой части Вселенной оценивается в секстильонов - , а количество атомов, из которых состоит земной шар имеет порядок додекальонов), то гугол уже «виртуальный», не говоря уже об числе Грэма. Масштаб только первого члена настолько велик, что его практически невозможно осознать, хотя запись выше относительно проста для понимания. Хотя - это всего лишь количество башен в этой формуле для , уже это число много больше количества объёмов Планка (наименьший возможный физический объём), которые содержатся в наблюдаемой вселенной (примерно ). После первого члена нас ожидают ещё члена стремительно растущей последовательности.

10 в 3003 степени

Споры о том, какая самая большая цифра в мире, ведутся постоянно. Разные системы исчисление предлагают разные варианты и люди не знают чему верить, и какую именно цифру считать самой большой.

Данный вопрос интересовал ученых еще со времен Римской империи. Наибольшая загвоздка кроется в определении, что такое «число», и что такое «цифра». В свое время люди длительное время считали самым большим числом дециллион, то есть 10 в 33 степени. Но, после того, как ученые стали активно изучать американскую и английскую метрические системы, было обнаружено, что самое большое число в мире это 10 в 3003 степени – миллеиллион. Люди в повседневной жизни считают, что самой большой цифрой является триллион. Причем, это довольно формально, поскольку после триллиона, названия просто не даются, ведь счет начинается слишком сложный. Однако, чисто теоретически, количество нулей можно прибавлять до бесконечности. Поэтому представить даже чисто визуально триллион и то, что следует за ним, является практически невозможным.

В римских цифрах

С другой стороны, определение «цифры» в понимании математиков, это немного иное. Под цифрой подразумевается знак, который принят повсеместно и используется для того, чтобы обозначить количество, выраженное в числовом эквиваленте. Под вторым понятием «число» подразумевается выражение количественных характеристик в удобном виде через использование цифр. Из этого следует, что числа состоят из цифр. Также важно то, что цифра обладает знаковыми свойствами. Они обусловлены, узнаваемы, неизменяемы. Числа тоже имеют знаковые свойства, но они вытекают из того, что числа состоят из цифр. Отсюда можно сделать вывод, что триллион, это вовсе не цифра, а число. Тогда, какая же самая большая цифра в мире, если это не триллион, который является числом?

Важно то, что цифры используются, как составляющие числа, но и не только это. Цифра впрочем это то же число, если мы говорим о каких-то вещах, считая их от нуля и до девяти. Такая система признаков применяется не только к привычным нам арабским цифрам, но также и к римским I, V, X, L, C, D, M. Это римские цифры. С другой стороны V I I I – это римское число. В арабском исчислении ему соответствует цифра восемь.

В арабских цифрах

Таким образом, получается, что цифрами считаются единицы счета от нуля до девяти, а все остальное числа. Отсюда вывод, что самой большой цифрой в мире получается девять. 9 – знак, а число это простая количественная абстракция. Триллион это число, и никак не цифра, а потому не может быть самой большой цифрой в мире. Триллионом можно назвать самое большое число в мире и то чисто номинально, поскольку числа можно считать до бесконечности. Число цифр же строго ограничено – от 0 и до 9.

Также следует помнить, что цифры и числа разных систем исчисления не совпадают, как мы видели из примеры с арабскими и римскими числами и цифрами. Это происходит потому, что цифры и числа это простые понятия , которые выдумывает сам человек. Поэтому число одной системы исчисления с легкостью может быть цифрой другой и наоборот.

Таким образом, самое большое число является неисчислимым, ведь его можно продолжать складывать до бесконечности из цифр. Что касается, собственно цифр, то в общепринятой системе, самой большой цифрой считается 9.

Мир науки просто удивителен своими знаниями. Однако постигнуть их все не сможет даже самый гениальный в мире человек. Но стремиться к этому нужно. Именно поэтому в данной статье хочется разобраться, какое оно, самое большое число.

О системах

В первую очередь необходимо сказать о том, что в мире существует две системы именования чисел: американская и английская. В зависимости от этого одно и то же число может называться по-разному, хотя и иметь одно и то же значение. И в самом начале нужно разобраться именно с этими нюансами, дабы избежать неопределенности и путаницы.

Американская система

Интересным окажется тот факт, что данная система используется не только в Америке и Канаде, но и в России. К тому же она имеет и свое научное название: система именования чисел с короткой шкалой. Как же называются в данной системе большие числа? Так, секрет довольно-таки простой. В самом начале будет идти латинское порядковое числительное, после же просто добавится всем известный суффикс «-иллион». Интересным окажется следующий факт: в переводе с латинского языка число «миллион» можно перевести как «тысячища». Американской системе принадлежат следующие числа: триллион - это 10 12 , квинтиллион - 10 18 , октиллион - 10 27 и т. д. Несложно будет также разобраться, сколько же нулей записано в числе. Для этого нужно знать простую формулу : 3*х + 3 (где «х» в формуле - это латинское числительное).

Английская система

Однако, несмотря на простоту американской системы, в мире все же более распространена английская система, которая является системой названия чисел именно с длинной шкалой. С 1948 года ею пользуются в таких странах, как Франция, Великобритания, Испания, а также в странах - бывших колониях Англии и Испании. Построение чисел тут также довольно-таки простое: к латинскому обозначению добавляют суффикс «-иллион». Дальше же, если число в 1000 раз больше, добавляется уже суффикс «-иллиард». Как можно узнать количество спрятанных в числе нулей?

  1. Если число заканчивается на «-иллион», нужна будет формула 6*х + 3 («х» - это латинское числительное).
  2. Если число заканчивается на «-иллиард», надо будет формула 6*х + 6 (где «х», опять же, латинское числительное).

Примеры

На данном этапе для примера можно рассмотреть, как же будут называться одни и те же числа, однако в разной шкале.

Можно без проблем увидеть, что одно и то же название в разных системах обозначает разные числа. Например, триллион. Поэтому, рассматривая число, все же предварительно нужно узнать, согласно какой системе оно записано.

Внесистемные числа

Стоит сказать и о том, что, помимо системных, существуют также и внесистемные числа. Может, среди них затерялось самое большое число? Стоит в этом разобраться.

  1. Гугол. Это число десять в сотой степени, т. е. единица, за которой следует сто нулей (10 100). О данном числе впервые было сказано в далеком 1938 году ученым Эдвардом Каснером. Весьма интересный факт : всемирная поисковая система «Гугл» названа в честь довольно-таки большого на то время числа - гугол. А название ему придумал малолетний племянник Каснера.
  2. Асанкхейя. Это весьма интересное название, которое с санскрита переводится как «неисчислимый». Числовое значение ее - единица со 140 нулями - 10 140 . Интересным окажется следующий факт: это было известно людям еще в 100 году до н. э., о чем говорит запись в Джайна-сутре, известном буддийском трактате. Данное число считалось особенным, ведь было мнение, что столько же нужно космических циклов, чтобы достичь нирваны. Также на то время это число считалось самым большим.
  3. Гуголплекс. Это число придумано все тем же Эдвардом Каснером и его вышеупомянутым племянником. Числовое его обозначение - десять в десятой степени, которая, в свою очередь, состоит в сотой степени (т. е. десять в степени гуголплекс). Также ученый сказал, что таким образом можно получить настолько большое число, насколько хочется: гуголтетраплекс, гуголгексаплекс, гуголоктаплекс, гуголдекаплекс и т. д.
  4. Число Грэма - G. Это самое большое число, признано таковым в недалеком 1980 году Книгой рекордов Гиннеса. Оно существенно больше, нежели гуголплекс и его производные. А ученые и вовсе говорили о том, что вся Вселенная не в состоянии в себя вместить всю десятичную запись числа Грэма.
  5. Число Мозера, число Скьюза. Эти числа также считаются одними из самых больших и применяются они чаще всего при решении различных гипотез и теорем. А так как эти числа невозможно записать общепринятыми всеми законами, каждый ученый делает это по-своему.

Последние разработки

Однако все же стоит сказать о том, что нет предела совершенству. И многие ученые считали и считают, что еще пока не найдено самое большое число. Ну и, конечно же, честь это сделать выпадет именно им. Над данным проектом длительное время работал американский ученый из Миссури, труды его увенчались успехом. 25 января 2012 года он нашел новое самое большое число в мире, которое состоит из семнадцати миллионов цифр (что является 49-м числом Мерсенна). Примечание: до этого времени самым большим считалось число, найденное компьютером в 2008 году, насчитывало оно 12 тысяч цифр и выглядело следующим образом: 2 43112609 - 1.

Не впервой

Стоит сказать о том, что это было подтверждено научными исследователями. Данное число прошло три уровня проверки тремя учеными на разных компьютерах, на что ушло целых 39 дней. Однако это не первые достижения в подобных поисках американского ученого. Ранее он уже открывал самые большие числа. Случалось это в 2005 и 2006 годах. В 2008 году компьютер прервал череду побед Кертиса Купера, однако он все же в 2012 году вернул себе пальму первенства и заслуженное звание первооткрывателя.

О системе

Как это все происходит, как ученые находят самые большие числа? Так, сегодня большинство работы за них делает компьютер. В данном же случае Купер использовал распределенные вычисления. Что это значит? Эти расчеты ведут программы, установленные на компьютерах пользователей Интернета, которые добровольно решили принять участие в исследовании. В рамках данного проекта было определено 14 чисел Мерсенна, названных так в честь французского математика (это простые числа, которые делятся только сами на себя и на единицу). В виде формулы это выглядит следующим образом: M n = 2 n - 1 («n» в данной формуле - это натуральное число).

О бонусах

Может возникнуть логический вопрос : а что заставляет ученых работать в этом направлении? Так, это, конечно же, азарт и желание быть первооткрывателем. Однако и тут есть свои бонусы: за свое детище Кертис Купер получил денежный приз в размере 3 тысячи долларов. Но и это еще не все. Специальный Фонд Электронных Рубежей (аббревиатура: EFF) поощряет такие вот поиски и обещает незамедлительно наградить денежным призом в размере 150 и 250 тысяч долларов тех, кто предоставит на рассмотрение простые числа, состоящие из 100 миллионов и миллиарда чисел. Так можно не сомневаться, что в этом направлении сегодня работает огромное количество ученых по всему миру.

Простые выводы

Итак, какое самое большое число сегодня? На данный момент найдено оно американским ученым из университета Миссури Кертисом Купером, которое можно записать следующим образом: 2 57885161 - 1. При этом оно также является 48 числом французского математика Мерсенна. Но стоит сказать о том, что конца в этих поисках быть не может. И неудивительно, если через определенное время ученые нам предоставят на рассмотрение следующее новонайденное самое большое в мире число. Можно не сомневаться, что произойдет это в самые ближайшие сроки.

Бесчисленное множество различных чисел окружает нас каждый день. Наверняка многие люди хотя бы раз интересовались, какое число считается самым большим. Ребенку можно просто сказать, что это – миллион, но взрослые прекрасно понимают, что за миллионом следуют и другие числа. Например, стоит только каждый раз прибавлять к числу единичку, и оно будет становиться все больше – так происходит до бесконечности. Но если разобрать числа, имеющие названия, то можно узнать, как называется самое большое число в мире.

Появление названий чисел: какие способы используются?

На сегодняшний день есть 2 системы, согласно которым числам даются наименования, – американская и английская. Первая является довольно простой, а вторая – наиболее распространенной по всему миру. Американская позволяет давать имена большим числам так: вначале указывается порядковое числительное на латинском, а потом идет добавление суффикса «иллион» (исключением здесь служит миллион, означающий тысячу). Такую систему применяют американцы, французы, канадцы, а также используется она и в нашей стране.


Английская широко применяется в Англии и Испании. По ней числа именуются так: числительное на латинском «плюсуется» с суффиксом «иллион», а к последующему (большему в тысячу раз) числу «плюсуется» «иллиард». Например, сначала идет триллион, за ним «шагает» триллиард, за квадриллионом же идет квадриллиард и т.д.

Так, одно и то же число в различных системах может означать разное, к примеру, американский биллион в английской системе именуется миллиардом.

Внесистемные числа

Помимо чисел, которые записываются по известным системам (приведенным выше), существуют еще и внесистемные. Они обладают своими названиями, в которых не включаются латинские префиксы.

Начать их рассмотрение можно с числа, называемого мириадой. Определяется оно как сотня сотен (10000). Но по своему назначению это слово не применяется, а употребляется в качестве указания на бесчисленное множество. Даже словарь Даля любезно предоставит определение такого числа.

Следующим после мириады идет гугол, обозначающий 10 в степени 100. Впервые это наименование было употреблено в 1938 году – математиком из Америки Э.Каснером, отметившим, что это название придумал его племянник.


В честь гугола свое название получил Google (поисковая система). Затем 1-ца с гуголом нулей (1010100) представляет собой гуголплекс – такое название придумал тоже Каснер.

Еще большим по сравнению с гуголплексом является число Скьюза (е в степени е в степени е79), предложенное Скьюзом при доказательстве гипотезы Риммана о простых числах (1933 год). Есть и еще одно число Скьюза, но оно применяется, когда несправедлива гипотеза Риммана. Какое из них больше, сказать довольно сложно, особенно если речь заходит о больших степенях. Однако и это число, несмотря на свою «огромность», не может считаться самым-самым из всех тех, которые обладают своими названиями.

А лидером среди самых больших чисел в мире является число Грэма (G64). Именно его использовали в первый раз для проведения доказательств в области математической науки (1977 год).


Когда речь идет о таком числе, то нужно знать, что без специальной 64-уровневой системы, созданной Кнутом, не обойтись – причина тому связь числа G с бихроматическими гиперкубами. Кнутом была придумана сверхстепень, а для того чтобы было удобно делать ее записи, он предложил использование стрелок вверх. Вот мы и узнали, как называется самое большое число в мире. Стоит отметить, что это число G попало на страницы известной Книги рекордов.

John Sommer

Ставьте после любой цифры нули или перемножайте с десятками, возведенными в сколь угодно большую степень. Мало не покажется. Покажется очень много. Но голые записи, все-таки, не слишком впечатляют. Громоздящиеся нули у гуманитария вызывают не столько удивление, сколько легкую зевоту. В любом случае, к любому самому большому числу в мире, которое вы можете вообразить, всегда можно прибавить еще единицу... И число выйдет еще больше.

И все-таки, есть в русском или любом другом языке слова для обозначения очень больших чисел? Тех, которые больше миллиона, миллиарда, триллиона, биллиона? И вообще, биллион - это сколько?

Оказывается, существуют две системы наименования чисел. Но не арабская, египетская, или любых других древних цивилизаций, а - американская и английская.

В американской системе числа называются так: берется латинское числительное + - иллион (суффикс). Таким образом, получаются числа:

Триллион - 1 000 000 000 000 (12 нулей)

Квадриллион - 1 000 000 000 000 000 (15 нулей)

Квинтиллион - 1 и 18 нулей

Секстиллион - 1 и 21 нуль

Септиллион - 1 и 24 нуля

октиллион - 1 и 27 нулей

Нониллион - 1 и 30 нулей

Дециллион - 1 и 33 нуля

Формула проста: 3·x+3 (х - латинское числительное)

По идее должны быть еще числа анилион (unus в латинском языке - один) и дуолион (duo - два), но, по-моему, такие названия вообще не используются.

Английская система наименования чисел распространена в большей степени.

Здесь тоже берется латинское числительное и к нему добавляется суффикс -иллион. Однако название следующего числа, которое больше предыдущего в 1 000 раз, образуется с помощью того же латинского числа и суффикса - иллиард. То бишь:

Триллион - 1 и 21 нуль (в американской системе - секстиллион!)

Триллиард - 1 и 24 нуля (в американской системе - септиллион)

Квадриллион - 1 и 27 нулей

Квадриллиард - 1 и 30 нулей

Квинтиллион - 1 и 33 нуля

Квиниллиард - 1 и 36 нулей

Секстиллион - 1 и 39 нулей

Секстиллиард - 1 и 42 нуля

Формулы для подсчета количества нулей, таковы:

Для чисел, оканчивающихся на - иллион - 6·x+3

Для чисел, оканчивающихся на - иллиард - 6·x+6

Как видите, путаница возможна. Но не устрашимся!

В России принята американская система наименования чисел. Из английской системы мы позаимствовали название числа "миллиард" - 1 000 000 000 = 10 9

А где же "заветный" биллион? - Да ведь биллион - это и есть миллиард! По-американски. А мы, хоть и пользуемся американской системой, а "миллиард" взяли из английской.

Пользуясь латинскими наименованиями чисел и американской системой назовем числа:

- вигинтиллион - 1 и 63 нуля

- центиллион - 1 и 303 нуля

- миллеиллион - единица и 3003 нуля! О-го-го...

Но и это, оказывается, не все. Есть еще числа внесистемные.

И первое из них, наверное, мириада - сотня сотен = 10 000

Гугол (именно в честь него названа известная поисковая система) - единица и сто нулей

В одном из буддийских трактатов названо число асанкхейя - единица и сто сорок нулей!

Название числа гуголплекс (как и гугол) придумал английский математик Эдвард Каснер и его девятилетний племянник - единица с - мама дорогая! - гуголом нулей!!!

Но и это еще не все...

Математик Скьюз назвал в честь себя число Скьюза. Оно означает e в степени e в степени e в степени 79, то есть e e e 79

А потом возникла большая трудность. Названия числам придумать можно. А вот как их записывать? Количество степеней степеней степеней уже таково, что просто не убирается на страницу! :)

И тогда некоторые математики стали записывать числа в геометрических фигурах . А первым, говорят, такой способ записи придумал выдающийся писатель и мыслитель Даниил Иванович Хармс.

И, все-таки, какое САМОЕ БОЛЬШОЕ ЧИСЛО В МИРЕ? - Оно называется СТАСПЛЕКС и равно G 100,

где G - число Грэма, самое большое число, когда-либо применявшееся в математических доказательствах.

Это число - стасплекс - придумал замечательный человек , наш соотечественник Стас Козловский, к ЖЖ которому я вас и адресую:) - ctac

просмотров
просмотров