Когда квадратное уравнение имеет один корень. Решение квадратных уравнений с помощью дискриминанта
Просто. По формулам и чётким несложным правилам. На первом этапе
надо заданное уравнение привести к стандартному виду, т.е. к виду:
Если уравнение вам дано уже в таком виде - первый этап делать не нужно. Самое главное - правильно
определить все коэффициенты, а , b и c .
Формула для нахождения корней квадратного уравнения.
Выражение под знаком корня называется дискриминант . Как видим, для нахождения икса, мы
используем только a, b и с . Т.е. коэффициенты из квадратного уравнения . Просто аккуратно подставляем
значения a, b и с в эту формулу и считаем. Подставляем со своими знаками!
Например , в уравнении:
а =1; b = 3; c = -4.
Подставляем значения и записываем:
Пример практически решён:
Это ответ.
Самые распространённые ошибки - путаница со знаками значений a, b и с . Вернее, с подстановкой
отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы
с конкретными числами. Если есть проблемы с вычислениями, так и делайте!
Предположим, надо вот такой пример решить:
Здесь a = -6; b = -5; c = -1
Расписываем все подробно, внимательно, ничего не упуская со всеми знаками и скобками:
Часто квадратные уравнения выглядят слегка иначе. Например, вот так:
А теперь примите к сведению практические приёмы , которые резко снижают количество ошибок.
Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду.
Что это означает?
Допустим, после всяких преобразований вы получили вот такое уравнение:
Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с.
Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:
Избавьтесь от минуса. Как? Надо умножить всё уравнение на -1. Получим:
А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример.
Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.
Приём второй. Проверяйте корни! По теореме Виета .
Для решения приведённых квадратных уравнений , т.е. если коэффициент
x 2 +bx+c=0,
тогда x 1 x 2 =c
x 1 +x 2 =− b
Для полного квадратного уравнения, в котором a≠1 :
x 2 + b x+ c =0,
делим все уравнение на а:
→ →
где x 1 и x 2 - корни уравнения.
Приём третий . Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте
уравнение на общий знаменатель .
Вывод. Практические советы :
1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .
2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего
уравнения на -1.
3. Если коэффициенты дробные - ликвидируем дроби умножением всего уравнения на соответствующий
множитель.
4. Если икс в квадрате - чистый, коэффициент при нём равен единице, решение можно легко проверить по
Более простым способом . Для этого вынесите z за скобки. Вы получите : z(аz + b) = 0. Множители можно расписать: z=0 и аz + b = 0, так как оба могут давать в результате ноль. В записи аz + b = 0 перенесем второй вправо с другим знаком. Отсюда получаем z1 = 0 и z2 = -b/а. Это и есть корни исходного .
Если же имеется неполное уравнение вида аz² + с = 0, в данном случае находятся простым переносом свободного члена в правую часть уравнения. Также поменяйте при этом его знак. Получится запись аz² = -с. Выразите z² = -с/а. Возьмите корень и запишите два решения - положительное и отрицательное значение корня квадратного.
Обратите внимание
При наличии в уравнении дробных коэффициентов помножьте все уравнение на соответствующий множитель так, чтобы избавиться от дробей.
Знание о том, как решать квадратные уравнения, необходимо и школьникам, и студентам, иногда это может помочь и взрослому человеку в обычной жизни . Существует несколько определенных методов решений.
Решение квадратных уравнений
Квадратным уравнение вида a*x^2+b*x+c=0. Коэффициент х является искомой переменной, a, b, c - числовые коэффициенты. Помните, что знак «+» может меняться на знак «-».Для того чтобы решить данное уравнение, необходимо воспользоваться теоремой Виета или найти дискриминант. Самым распространенным способом является нахождение дискриминанта, так как при некоторых значениях a, b, c воспользоваться теоремой Виета не представляется возможным.
Чтобы найти дискриминант (D), необходимо записать формулу D=b^2 - 4*a*c. Значение D может быть больше, меньше или равно нулю. Если D больше или меньше нуля, то корня будет два, если D=0, то остается всего один корень, более точно можно сказать, что D в этом случае имеет два равнозначных корня. Подставьте известные коэффициенты a, b, c в формулу и вычислите значение.
После того как вы нашли дискриминант, для нахождения х воспользуйтесь формулами: x(1) = (- b+sqrt{D})/2*a; x(2) = (- b-sqrt{D})/2*a, где sqrt - это функция, означающая извлечение квадратного корня из данного числа . Посчитав эти выражения, вы найдете два корня вашего уравнения, после чего уравнение считается решенным.
Если D меньше нуля, то он все равно имеет корни. В школе данный раздел практически не изучается. Студенты вузов должны знать о том, что появляется отрицательное число под корнем. От него избавляются выделяя мнимую часть, то есть -1 под корнем всегда равно мнимому элементу «i», который умножается на корень с таким же положительным числом. К примеру, если D=sqrt{-20}, после преобразования получается D=sqrt{20}*i. После этого преобразования, решение уравнения сводится к такому же нахождению корней, как было описано выше.
Теорема Виета заключается в подборе значений x(1) и x(2). Используется два тождественных уравнения: x(1) + x(2)= -b; x(1)*x(2)=с. Причем очень важным моментом является знак перед коэффициентом b, помните, что этот знак противоположен тому, который стоит в уравнении. С первого взгляда кажется, что посчитать x(1) и x(2) очень просто, но при решении вы столкнетесь с тем, что числа придется именно подбирать.
Элементы решения квадратных уравнений
По правилам математики некоторые можно разложить на множители: (a+x(1))*(b-x(2))=0, если вам посредством формул математики удалось преобразовать подобным образом данное квадратное уравнение, то смело записывайте ответ. x(1) и x(2) будут равны рядом стоящим коэффициентам в скобках, но с противоположным знаком.Также не стоит забывать про неполные квадратные уравнения. У вас может отсутствовать какое-то из слагаемых, если это так, то все его коэффициенты просто равны нулю. Если перед x^2 или x ничего не стоит, то коэффициенты а и b равны 1.
Библиографическое описание: Гасанов А. Р., Курамшин А. А., Ельков А. А., Шильненков Н. В., Уланов Д. Д., Шмелева О. В. Способы решения квадратных уравнений // Юный ученый. 2016. №6.1. С. 17-20..03.2019).
Наш проект посвящен способам решения квадратных уравнений. Цель проекта: научиться решать квадратные уравнения способами, не входящими в школьную программу. Задача: найти все возможные способы решения квадратных уравнений и научиться их использовать самим и познакомить одноклассников с этими способами.
Что же такое «квадратные уравнения»?
Квадратное уравнение - уравнение вида ax 2 + bx + c = 0 , где a , b , c - некоторые числа ( a ≠ 0 ), x - неизвестное.
Числа a, b,c называются коэффициентами квадратного уравнения.
- a называется первым коэффициентом;
- b называется вторым коэффициентом;
- c - свободным членом.
А кто же первый "изобрёл" квадратные уравнения?
Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений.
Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
Вавилонские математики примерно с IV века до н.э. использовали метод дополнения квадрата для решения уравнений с положительными корнями. Около 300 года до н.э. Эвклид придумал более общий геометрический метод решения. Первым математиком, который нашел решения уравнения с отрицательными корнями в виде алгебраической формулы , был индийский ученый Брахмагупта (Индия, VII столетие нашей эры).
Брахмагупта изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
ax2 + bх = с, а>0
В этом уравнении коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях , предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корням», т. е. ах2 = bх.
2) «Квадраты равны числу», т. е. ах2 = с.
3) «Корни равны числу», т. е. ах2 = с.
4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.
5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.
6) «Корни и числа равны квадратам», т. е. bх + с == ах2.
Для Аль-Хорезми, избегавшего употребления отрицательных чисел , члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.
Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи . Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.
Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М. Штифелем.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья,Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
Рассмотрим несколько способов решения квадратных уравнений.
Стандартные способы решения квадратных уравнений из школьной программы :
- Разложение левой части уравнения на множители.
- Метод выделения полного квадрата.
- Решение квадратных уравнений по формуле.
- Графическое решение квадратного уравнения.
- Решение уравнений с использованием теоремы Виета.
Остановимся подробнее на решение приведенных и не приведенных квадратных уравнений по теореме Виета.
Напомним, что для решения приведенных квадратных уравнений достаточно найти два числа такие, произведение которых равно свободному члену, а сумма - второму коэффициенту с противоположным знаком.
Пример. x 2 -5x+6=0
Нужно найти числа, произведение которых равно 6, а сумма 5. Такими числами будут 3 и 2.
Ответ: x 1 =2, x 2 =3.
Но можно использовать этот способ и для уравнений с первым коэффициентом не равным единице.
Пример. 3x 2 +2x-5=0
Берём первый коэффициент и умножаем его на свободный член: x 2 +2x-15=0
Корнями этого уравнения будут числа, произведение которых равно - 15, а сумма равна - 2. Эти числа - 5 и 3. Чтобы найти корни исходного уравнения, полученные корни делим на первый коэффициент.
Ответ: x 1 =-5/3, x 2 =1
6. Решение уравнений способом "переброски".
Рассмотрим квадратное уравнение ах 2 + bх + с = 0, где а≠0.
Умножая обе его части на а, получаем уравнение а 2 х 2 + аbх + ас = 0.
Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у 2 + by + ас = 0, равносильному данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета.
Окончательно получаем х 1 = у 1 /а и х 2 = у 2 /а.
При этом способе коэффициент a умножается на свободный член, как бы "перебрасывается" к нему, поэтому его называют способом "переброски". Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.
Пример. 2х 2 - 11х + 15 = 0.
"Перебросим" коэффициент 2 к свободному члену и сделав замену получим уравнение у 2 - 11у + 30 = 0.
Согласно обратной теореме Виета
у 1 = 5, х 1 = 5/2, х 1 =2,5 ;у 2 = 6, x 2 = 6/2, x 2 = 3.
Ответ: х 1 =2,5; х 2 = 3.
7. Свойства коэффициентов квадратного уравнения.
Пусть дано квадратное уравнение ах 2 + bх + с = 0, а ≠ 0.
1. Если a+ b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х 1 = 1.
2. Если а - b + с = 0, или b = а + с, то х 1 = - 1.
Пример. 345х 2 - 137х - 208 = 0.
Так как а + b + с = 0 (345 - 137 - 208 = 0), то х 1 = 1, х 2 = -208/345.
Ответ: х 1 =1; х 2 = -208/345 .
Пример. 132х 2 + 247х + 115 = 0
Т.к. a-b+с = 0 (132 - 247 +115=0), то х 1 = - 1, х 2 = - 115/132
Ответ: х 1 = - 1; х 2 =- 115/132
Существуют и другие свойства коэффициентов квадратного уравнения. но ихиспользование более сложное.
8. Решение квадратных уравнений с помощью номограммы.
Рис 1. Номограмма
Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. - М., Просвещение, 1990.
Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0 . Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.
Криволинейная шкала номограммы построена по формулам (рис. 1):
Полагая ОС = р, ED = q, ОЕ = а (все в см), из рис.1 подобия треугольников САН и CDF получим пропорцию
откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.
Рис. 2 Решение квадратных уравнения с помощью номограммы
Примеры.
1) Для уравнения z 2 - 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0
Ответ:8,0; 1,0.
2) Решим с помощью номограммы уравнение
2z 2 - 9z + 2 = 0.
Разделим коэффициенты этого уравнения на 2, получим уравнение z 2 - 4,5z + 1 = 0.
Номограмма дает корни z 1 = 4 и z 2 = 0,5.
Ответ: 4; 0,5.
9. Геометрический способ решения квадратных уравнений.
Пример. х 2 + 10х = 39.
В оригинале эта задача формулируется следующим образом: "Квадрат и десять корней равны 39".
Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5x. Полученную фигуру дополняют затем до нового квадрата АВСD, достраивая в углах четыре равных квадрата, сторона каждого из них 2,5, а площадь 6,25
Рис. 3 Графический способ решения уравнения х 2 + 10х = 39
Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4∙2,5x = 10х) и четырех пристроенных квадратов (6,25∙ 4 = 25) , т.е. S = х 2 + 10х = 25. Заменяя х 2 + 10х числом 39, получим что S = 39+ 25 = 64, откуда следует, что сторона квадрата АВСD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим
10. Решение уравнений с использованием теоремы Безу.
Теорема Безу. Остаток от деления многочлена P(x) на двучлен x - α равен P(α) (т.е. значению P(x) при x = α).
Если число α является корнем многочлена P(x), то этот многочлен делится на x -α без остатка.
Пример. х²-4х+3=0
Р(x)= х²-4х+3, α: ±1,±3, α =1, 1-4+3=0. Разделим Р(x) на (х-1):(х²-4х+3)/(х-1)=х-3
х²-4х+3=(х-1)(х-3), (х-1)(х-3)=0
х-1=0; х=1, или х-3=0, х=3; Ответ: х 1 =2, х 2 =3.
Вывод: Умение быстро и рационально решать квадратные уравнения просто необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений. Изучив все найденные способы решения квадратных уравнений, мы можем посоветовать одноклассникам, кроме стандартных способов, решение способом переброски (6) и решение уравнений по свойству коэффициентов (7), так как они являются более доступными для понимания.
Литература:
- Брадис В.М. Четырехзначные математические таблицы. - М., Просвещение, 1990.
- Алгебра 8 класс: учебник для 8 кл. общеобразоват. учреждений Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. под ред. С. А. Теляковского 15-е изд., дораб. - М.: Просвещение, 2015
- https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
- Глейзер Г.И. История математики в школе. Пособие для учителей. / Под ред. В.Н. Молодшего. - М.: Просвещение, 1964.
Пусть дано квадратное уравнение ах 2 + bх + с = 0.
Применим к квадратному трехчлену ах 2 + bх + с те же преобразования, которые мы выполняли в § 13, когда доказывали теорему о том, что графиком функции у = ах 2 + bх + с является парабола.
Имеем
Обычно выражение b 2 - 4ас обозначают буквой D и называют дискриминантом квадратного уравнения ах 2 + bх + с = 0 (или дискриминантом квадратного трехчлена ах + bх + с).
Таким образом
Значит, квадратное уравнение ах 2 + их + с = О можно переписать в виде
Любое квадратное уравнение можно преобразовать к виду (1), удобному, как мы сейчас убедимся, для того, чтобы определять число корней квадратного уравнения и находить эти корни.
Доказательство. Если D < 0, то правая часть уравнения (1) — отрицательное число; в то же время левая часть уравнения (1) при любых значениях х принимает неотрицательные значения. Значит, нет ни одного значения х, которое удовлетворяло бы уравнению (1), а потому уравнение (1) не имеет корней.
Пример 1.
Решить уравнение 2x 2 + 4х + 7 = 0.
Решение. Здесь а = 2, b = 4, с = 7,
D = b 2 -4ac = 4 2
.
4
.
2
.
7 = 16-56 = -40.
Так как D < 0, то по теореме 1 данное квадратное уравнение не имеет корней.
Доказательство. Если D = 0, то уравнение (1) принимает вид
— единственный корень уравнения.
Замечание 1.
Помните ли вы, что х = - — абсцисса вершины параболы, которая служит графиком функции у = ах 2 + их + с? Почему именно это
значение оказалось единственным корнем квадратного уравнения ах 2 + их + с — 0? «Ларчик» открывается просто: если D — 0, то, как мы установили ранее,
Графиком же функции является парабола с вершиной в точке (см., например, рис. 98). Значит, абсцисса вершины параболы и единственный корень квадратного уравнения при D = 0 — одно и то же число.
Пример 2.
Решить уравнение 4x 2 - 20x + 25 = 0.
Решение. Здесь а = 4, b = -20, с = 25, D = b 2 - 4ас = (-20) 2 - 4 . 4 . 25 = 400 - 400 = 0.
Так как D = 0, то по теореме 2 данное квадратное уравнение имеет один корень. Этот корень находится по формуле
Ответ: 2,5.
Замечание 2.
Обратите внимание, что 4х 2 - 20х +25 —
полный квадрат
: 4х 2 - 20х + 25 = (2х - 5) 2 .
Если бы мы это заметили сразу, то решили бы уравнение так: (2х - 5) 2 = 0, значит, 2х - 5 = 0, откуда получаем х = 2,5. Вообще, если D = 0, то
ах 2 + bх + с = — это мы отметили ранее в замечании 1.
Если D > 0, то квадратное уравнение ах 2 + bх + с = 0 имеет два корня, которые находятся по формулам
Доказательство . Перепишем квадратное уравнение ах 2 + Ь х + с = 0 в виде (1)
Положим
По условию, D > 0, значит, правая часть уравнения положительное число. Тогда из уравнения (2) получаем, что
Итак, заданное квадратное уравнение имеет два корня:
Замечание 3.
В математике довольно редко бывает так, чтобы введенный термин не имел, образно выражаясь, житейской подоплеки. Возьмем новое
понятие — дискриминант. Вспомните слово «дискриминация». Что оно означает? Оно означает унижение одних и возвышение других, т.е. различное отноше-
ние к различным пюдям. Оба слова (и дискриминант, и дискриминация) происходят от латинского discriminans — «различающий». Дискриминант различает квадратные уравнения по числу корней.
Пример 3.
Решить уравнение Зх 2 + 8х - 11 = 0.
Решение. Здесь а = 3, b = 8, с = - 11,
D = b 2 - 4ас = 8 2 - 4 . 3 . (-11) = 64 + 132 = 196.
Так как D > 0, то по теореме 3 данное квадратное уравнение имеет два корня. Эти корни находятся по формулам (3)
Фактически мы с вами выработали следующее правило:
Правило решения уравнения
ах 2 + bх + с = 0
Это правило универсально, оно применимо как к полным, так и к неполным квадратным уравнениям. Однако неполные квадратные уравнения обычно по этому правилу не решают, их удобнее решать так, как мы это делали в предыдущем параграфе.
Пример 4. Решить уравнения:
а) х 2 + Зх - 5 = 0; б) - 9x 2 + 6х - 1 = 0; в) 2х 2 -х + 3,5 = 0.
Р е ш е н и е. а) Здесь а = 1, b = 3, с = - 5,
D = b 2 - 4ас = З 2 - 4 . 1 . (- 5) = 9 + 20 = 29.
Так как D > 0, то данное квадратное уравнение имеет два корня. Эти корни находим по формулам (3)
Б) Как показывает опыт, удобнее иметь дело с квадратными уравнениями, у которых старший коэффициент положителен. Поэтому сначала умножим обе части уравнения на -1, получим
9x 2 - 6x + 1 = 0.
Здесь а = 9, b = -6, с = 1, D = b 2 - 4ас = 36 - 36 = 0.
Так как D = 0, то данное квадратное уравнение имеет один корень. Этот корень находится по формуле х = - . Значит,
Это уравнение можно было решить по-другому: так как
9х 2 - 6x + 1 = (Зх - IJ, то получаем уравнение (Зх - I) 2 = 0, откуда находим Зх - 1 = 0, т. е. х = .
в) Здесь а = 2, b = - 1, с = 3,5, D = b 2 - 4ас = 1 - 4 . 2 . 3,5= 1 - 28 = - 27. Так как D < 0, то данное квадратное уравнение не имеет корней.
Математики — люди практичные, экономные. Зачем, говорят они, пользоваться таким длинным правилом решения квадратного уравнения, лучше сразу написать общую формулу:
Если окажется, что дискриминант D = b 2 - 4ас — отрицательное число, то записанная формула не имеет смысла (под знаком квадратного корня находится отрицательное число), значит, корней нет. Если же окажется, что дискриминант равен нулю, то получаем
Т. е. один корень (говорят также, что квадратное уравнение в этом случае имеет два одинаковых корня:
Наконец, если окажется, что b 2 - 4ас > 0, то получаются два корня х 1 и х 2 , которые вычисляются по тем же формулам (3), что указаны выше.
Само число в этом случае положительно (как всякий
квадратный корень
из положительного числа), а двойной знак перед ним означает, что в одном случае (при отыскании х 1) это положительное число прибавляется к числу - b, а в другом случае (при отыскании х 2) это положительное число вы-
читается из числа - b.
У вас есть свобода выбора. Хотите —- решайте квадратное уравнение подробно, используя сформулированное выше правило; хотите — запишите сразу формулу (4) и с ее помощью делайте необходимые выводы.
Пример 5
. Решить уравнения:
Решение, а) Конечно, можно использовать формулы (4) или (3), учитывая, что в данном случае Но зачем выполнять действия с дробями, когда проще и, главное, приятнее иметь дело с целыми числами? Давайте освободимся от знаменателей. Для этого нужно умножить обе части уравнения на 12, т. е. на наименьший общий знаменатель дробей, служащих коэффициентами уравнения. Получим
откуда 8х 2 + 10x - 7 = 0.
А теперь воспользуемся формулой (4)
Б) Мы снова имеем уравнение с дробными коэффициентами: а = 3, b = - 0,2, с = 2,77. Умножим обе части уравнения на 100, тогда получим уравнение с целыми коэффициентами:
300x 2 - 20x + 277 = 0.
Далее воспользуемся формулой (4):
Простая прикидка показывает, что дискриминант (подкоренное выражение) — отрицательное число. Значит, уравнение не имеет корней.
Пример 6.
Решить уравнение
Решение. Здесь, в отличие от предыдущего примера, предпочтительнее действовать по правилу, а не по сокращенной формуле (4).
Имеем а = 5, b = -, с = 1, D = b 2 - 4ас = (- ) 2 - 4 . 5 . 1 = 60 - 20 = 40. Так как D > 0, то квадратное уравнение имеет два корня, которые будем искать по формулам (3)
Пример 7.
Решить уравнение
х 2 - (2р + 1)x +(р 2 +р-2) = 0
Решение. Это квадратное уравнение отличается от всех рассмотренных до сих пор квадратных уравнений тем, что в роли коэффициентов выступают не конкретные числа, а буквенные выражения. Такие уравнения называют уравнениями с буквенными коэффициентами или уравнениями с параметрами. В данном случае параметр (буква) р входит в состав второго коэффициента и свободного члена уравнения.
Найдем дискриминант:
Пример 8
. Решить уравнение рx 2 + (1 - р) х - 1 = 0.
Решение. Это также уравнение с параметром р, но, в отличие от предыдущего примера, его нельзя сразу решать по формулам (4) или (3). Дело в том, что указанные формулы применимы к квадратным уравнениям, а про заданное уравнение мы этого пока сказать не можем. В самом деле, а вдруг р = 0? Тогда
уравнение примет вид 0 . x 2 + (1-0)x- 1 = 0, т. е. х - 1 = 0, откуда получаем х = 1. Вот если точно известно, что , то можно применять формулы корней квадратного уравнения:
Копьевская сельская средняя общеобразовательная школа
10 способов решения квадратных уравнений
Руководитель: Патрикеева Галина Анатольевна,
учитель математики
с.Копьево, 2007
1. История развития квадратных уравнений
1.1 Квадратные уравнения в Древнем Вавилоне
1.2 Как составлял и решал Диофант квадратные уравнения
1.3 Квадратные уравнения в Индии
1.4 Квадратные уравнения у ал- Хорезми
1.5 Квадратные уравнения в Европе XIII - XVII вв
1.6 О теореме Виета
2. Способы решения квадратных уравнений
Заключение
Литература
1. История развития квадратных уравнений
1.1 Квадратные уравнения в Древнем Вавилоне
Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.
Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:
X 2 + X = ¾; X 2 - X = 14,5
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
1.2 Как составлял и решал Диофант квадратные уравнения.
В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.
При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.
Вот, к примеру, одна из его задач.
Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение - 96»
Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 - х . Разность между ними 2х .
Отсюда уравнение:
(10 + х)(10 - х) = 96
100 - х 2 = 96
х 2 - 4 = 0 (1)
Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.
Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения
у(20 - у) = 96,
у 2 - 20у + 96 = 0. (2)
Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).
1.3 Квадратные уравнения в Индии
Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
ах 2 + b х = с, а > 0. (1)
В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары.
Задача 13.
«Обезьянок резвых стая А двенадцать по лианам…
Власть поевши, развлекалась. Стали прыгать, повисая…
Их в квадрате часть восьмая Сколько ж было обезьянок,
На поляне забавлялась. Ты скажи мне, в этой стае?»
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).
Соответствующее задаче 13 уравнение:
( x /8) 2 + 12 = x
Бхаскара пишет под видом:
х 2 - 64х = -768
и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:
х 2 - 64х + 32 2 = -768 + 1024,
(х - 32) 2 = 256,
х - 32 = ± 16,
х 1 = 16, х 2 = 48.
1.4 Квадратные уравнения у ал – Хорезми
В алгебраическом трактате ал - Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корнями», т.е. ах 2 + с = b х.
2) «Квадраты равны числу», т.е. ах 2 = с.
3) «Корни равны числу», т.е. ах = с.
4) «Квадраты и числа равны корням», т.е. ах 2 + с = b х.
5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.
6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .
Для ал - Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал - джабр и ал - мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида
ал - Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал - Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.
Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).
Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.
Трактат ал - Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.
1.5 Квадратные уравнения в Европе XIII - XVII вв
Формулы решения квадратных уравнений по образцу ал - Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции , отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI - XVII вв. и частично XVIII.
Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:
х 2 + bx = с,
при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
1.6 О теореме Виета
Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A - A 2 , равно BD , то A равно В и равно D ».
Чтобы понять Виета, следует вспомнить, что А , как и всякая гласная буква, означало у него неизвестное (наше х ), гласные же В, D - коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место
(а + b )х - х 2 = ab ,
х 2 - (а + b )х + а b = 0,
х 1 = а, х 2 = b .
Выражая зависимость между корнями и коэффициентами уравнений общими формулами , записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида . Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.
2. Способы решения квадратных уравнений
Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.