Таблица по химии название кислот и солей. Важнейшие классы неорганических веществ
Бескислородные: | Основность | Название соли |
HCl - хлористоводородная (соляная) | одноосновная | хлорид |
HBr - бромистоводородная | одноосновная | бромид |
HI - йодистоводородная | одноосновная | йодид |
HF - фтористоводородная (плавиковая) | одноосновная | фторид |
H 2 S - сероводородная | двухосновная | сульфид |
Кислородсодержащие: | ||
HNO 3 – азотная | одноосновная | нитрат |
H 2 SO 3 - сернистая | двухосновная | сульфит |
H 2 SO 4 – серная | двухосновная | сульфат |
H 2 CO 3 - угольная | двухосновная | карбонат |
H 2 SiO 3 - кремниевая | двухосновная | силикат |
H 3 PO 4 - ортофосфорная | трёхосновная | ортофосфат |
Соли – сложные вещества, которые состоят из атомов металла и кислотных остатков. Это наиболее многочисленный класс неорганических соединений.
Классификация. По составу и свойствам: средние, кислые, основные, двойные, смешанные, комплексные
Средние соли являются продуктами полного замещения атомов водорода многоосновной кислоты на атомы металла.
При диссоциации дают только катионы металла (или NH 4 +). Например:
Na 2 SO 4 ® 2Na + +SO
CaCl 2 ® Ca 2+ + 2Cl -
Кислые соли являются продуктами неполного замещения атомов водорода многоосновной кислоты на атомы металла.
При диссоциации дают катионы металла (NH 4 +), ионы водорода и анионы кислотного остатка, например:
NaHCO 3 ® Na + + HCO « H + +CO .
Основные соли являются продуктами неполного замещения групп OH - соответствующего основания на кислотные остатки.
При диссоциации дают катионы металла, анионы гидроксила и кислотного остатка.
Zn(OH)Cl ® + + Cl - « Zn 2+ + OH - + Cl - .
Двойные соли содержат два катиона металла и при диссоциации дают два катиона и один анион.
KAl(SO 4) 2 ® K + + Al 3+ + 2SO
Комплексны соли содержат комплексные катионы или анионы.
Br ® + + Br - « Ag + +2 NH 3 + Br -
Na ® Na + + - « Na + + Ag + + 2 CN -
Генетическая связь между различными классами соединений
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Оборудование и посуда : штатив с пробирками, промывалка, спиртовка.
Реактивы и материалы : красный фосфор,оксид цинка, гранулы Zn, порошок гашеной извести Ca(OH) 2 , 1 моль/дм 3 растворы NaOH, ZnSO 4 , СuSO 4 , AlCl 3 , FeCl 3 , HСl, H 2 SO 4 , универсальная индикаторная бумага, раствор фенолфталеина, метилоранжа, дистиллированная вода.
Порядок выполнения работы
1. Оксид цинка насыпать в две пробирки; в одну добавить раствор кислоты (HCl или H 2 SO 4) в другую раствор щелочи (NaOH или KOH) и слегка нагреть на спиртовке.
Наблюдения: Происходит ли растворение оксида цинка в растворе кислоты и щелочи?
Написать уравнения
Выводы: 1.К какому типу оксидов относится ZnO?
2. Какими свойствами обладают амфотерные оксиды?
Получение и свойства гидроксидов
2.1. В раствор щелочи (NaOH или KOH) опустить кончик универсальной индикаторной полоски. Сравнить полученный цвет индикаторной полоски со стандартной цветовой шкалой.
Наблюдения: Записать значение рН раствора.
2.2. Взять четыре пробирки, налить в первую 1 мл раствора ZnSO 4 , во вторую - СuSO 4 , в третью - AlCl 3 , в четвертую - FeCl 3 . В каждую пробирку добавить 1мл раствора NaOH. Написать наблюдения и уравнения происходящих реакций.
Наблюдения: Происходит ли выпадение осадка при добавлении щелочи к раствору соли? Укажите цвет осадка.
Написать уравнения происходящих реакций (в молекулярном и ионном виде).
Выводы: Какими способами могут быть получены гидроксиды металлов?
2.3. Половину осадков, полученных в опыте 2.2., перенести в другие пробирки. На одну часть осадка подействовать раствором H 2 SO 4 на другую – раствором NaOH.
Наблюдения: Происходит ли растворение осадков при добавлении щелочи и кислоты к осадкам?
Написать уравнения происходящих реакций (в молекулярном и ионном виде).
Выводы: 1.К какому типу гидроксидов относятся Zn(OH) 2 , Al(OH) 3 , Сu(OH) 2 , Fe(OH) 3 ?
2. Какими свойствами обладают амфотерные гидроксиды?
Получение солей.
3.1. В пробирку налить 2 мл раствора CuSO 4 и опустить в этот раствор очищенный гвоздь. (Реакция идет медленно, изменения на поверхности гвоздя появляются через 5-10 мин).
Наблюдения: Происходят ли какие-то изменения с поверхностью гвоздя? Что осаждается?
Написать уравнение окислительно-восстановительной реакции.
Выводы: Принимая во внимание ряд напряжений металлов, укажите способ получения солей.
3.2. В пробирку поместить одну гранулу цинка и прилить раствор HCl.
Наблюдения: Происходят ли выделение газа?
Написать уравнение
Выводы: Объясните данный способ получения солей?
3.3. В пробирку насыпать немного порошка гашеной извести Ca(OH) 2 и прилить раствор HСl.
Наблюдения: Происходит ли выделение газа?
Написать уравнение происходящей реакции (в молекулярном и ионном виде).
Вывод: 1. К какому типу относится реакция взаимодействия гидроксида и кислоты?
2.Какие вещества являются продуктами этой реакции?
3.5. В две пробирки налейте по 1 мл растворов солей: в первую – сульфата меди, во вторую – хлорида кобальта. Добавьте в обе пробирки по каплям раствор гидроксида натрия до образования осадков. Затем добавьте в обе пробирки избыток щелочи.
Наблюдения: Укажите изменения цвета осадков в реакциях.
Написать уравнение происходящей реакции (в молекулярном и ионном виде).
Вывод: 1. В результате каких реакций образуются основные соли?
2. Как можно перевести основные соли в средние?
Контрольные задания:
1. Из перечисленных веществ выписать формулы солей, оснований, кислот: Ca(OH) 2, Ca(NO 3) 2, FeCl 3, HCl, H 2 O, ZnS, H 2 SO 4, CuSO 4, KOH
Zn(OH) 2, NH 3, Na 2 CO 3, K 3 PO 4 .
2. Укажите формулы оксидов, соответствующие перечисленным веществам H 2 SO 4 , H 3 AsO 3 , Bi(OH) 3 , H 2 MnO 4 , Sn(OH) 2 , KOH, H 3 PO 4 , H 2 SiO 3 , Ge(OH) 4 .
3. Какие гидроксиды относятся к амфотерным? Составьте уравнения реакций, характеризующих амфотерность гидроксида алюминия и гидроксида цинка.
4. Какие из указанных соединений будут попарно взаимодействовать: P 2 O 5 , NaOH, ZnO, AgNO 3 , Na 2 CO 3 , Cr(OH) 3 , H 2 SO 4 . Составьте уравнения возможных реакций.
Лабораторная работа № 2 (4 ч.)
Тема: Качественный анализ катионов и анионов
Цель: освоить технику проведения качественных и групповых реакций на катионы и анионы.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Основной задачей качественного анализа является установление химического состава веществ, находящихся в разнообразных объектах (биологических материалах, лекарственных препаратах, продуктах питания, объектах окружающей среды ). В настоящей работе рассматривается качественный анализ неорганических веществ , являющихся электролитами, т. е. по сути качественный анализ ионов. Из всей совокупности встречающихся ионов выбраны наиболее важные в медико-биологическом отношении: (Fе 3+ , Fе 2+ , Zn 2+ , Са 2+ , Na + , К + , Мg 2+ , Сl - , РО , СО и др.). Многие из этих ионов входят в состав различных лекарственных препаратов и продуктов питания.
В качественном анализе используются не все возможные реакции, а только те, которые сопровождаются отчетливым аналитическим эффектом. Наиболее часто встречающиеся аналитические эффекты: появление новой окраски, выделение газа, образование осадка.
Существуют два принципиально разных подхода к качественному анализу : дробный и систематический . В систематическом анализе обязательно используют групповые реагенты, позволяющие разделить присутствующие ионы на отдельные группы, а в некоторых случаях и на подгруппы. Для этого часть ионов переводят в состав нерастворимых соединений, а часть ионов оставляют в растворе. После отделения осадка от раствора анализ их проводят раздельно.
Например, в растворе имеются ионы А1 3+ , Fе 3+ и Ni 2+ . Если на этот раствор подействовать избытком щелочи, выпадает осадок Fе(ОН) 3 и Ni(ОН) 2 , а в растворе остаются ионы [А1(ОН) 4 ] - . Осадок, содержащий гидроксиды железа и никеля, при обработке аммиаком частично растворится за счет перехода в раствор 2+ . Таким образом, с помощью двух реагентов - щелочи и аммиака были получены два раствора: в одном содержались ионы [А1(ОН) 4 ] - , в другом - ионы 2+ и осадок Fе(ОН) 3 . С помощью характерных реакций затем доказывается наличие тех или иных ионов в растворах и в осадке, который предварительно нужно растворить.
Систематический анализ используют в основном для обнаружения ионов в сложных многокомпонентных смесях. Он очень трудоемок, однако преимущество его заключается в легкой формализации всех действий, укладывающихся в четкую схему (методику).
Для проведения дробного анализа используют только характерные реакции. Очевидно, что присутствие других ионов может значительно искажать результаты реакции (наложение окрасок друг на друга, выпадение нежелательных осадков и т. д.). Во избежание этого в дробном анализе используют в основном высокоспецифические реакции, дающие аналитический эффект с небольшим числом ионов. Для успешного проведения реакций очень важно поддерживать определенные условия, в частности, рН. Очень часто в дробном анализе приходится прибегать к маскировке, т. е. к переводу ионов в соединения, не способные давать аналитический эффект с выбранным реактивом. Например, для обнаружения иона никеля используется диметилглиоксим. Сходный аналитический эффект с этим реагентом дает и ион Fе 2+ . Для обнаружения Ni 2+ ион Fе 2+ переводят в прочный фторидный комплекс 4- или же окисляют до Fе 3+ , например, пероксидом водорода.
Дробный анализ используют для обнаружения ионов в более простых смесях. Время анализа значительно сокращается, однако при этом от экспериментатора требуется более глубокое знание закономерностей протекания химических реакций , так как учесть в одной конкретной методике все возможные случаи взаимного влияния ионов на характер наблюдаемых аналитических эффектов достаточно сложно.
В аналитической практике часто применяют так называемый дробно-систематический метод. При таком подходе используется минимальное число групповых реактивов, что позволяет наметить тактику анализа в общих чертах , который затем осуществляется дробным методом.
По технике проведения аналитических реакций различают реакции: осадочные; микрокристаллоскопические; сопровождающиеся выделением газообразных продуктов; проводимые на бумаге; экстракционные; цветные в растворах; окрашивания пламени.
При проведении осадочных реакций обязательно отмечают цвет и характер осадка (кристаллический, аморфный), при необходимости проводят дополнительные испытания: проверяют осадок на растворимость в сильных и слабых кислотах, щелочах и аммиаке, избытке реактива. При проведении реакций, сопровождающихся выделением газа, отмечают его цвет и запах. В некоторых случаях проводят дополнительные испытания.
Например, если предполагают, что выделяющийся газ – оксид углерода (IV), его пропускают через избыток известковой воды.
В дробном и систематическом анализах широко используются реакции, в ходе которых появляется новая окраска, чаще всего это реакции комплексообразования или окислительно-восстановительные реакции.
В отдельных случаях такие реакции удобно проводить на бумаге (капельные реакции). Реактивы, не подвергающиеся разложению в обычных условиях, наносят на бумагу заранее. Так, для обнаружения сероводорода или сульфид-ионов применяют бумагу, пропитанную нитратом свинца [происходит почернение за счет образования сульфида свинца(II)]. Многие окислители обнаруживают с помощью йодкрахмальной бумаги, т.е. бумаги, пропитанной растворами иодида калия и крахмала. В большинстве же случаев необходимые реактивы наносят на бумагу во время проведения реакции, например, ализарин на ион А1 3+ , купрон на ион Сu 2+ и др. Для усиления окраски иногда применяют экстракцию в органический растворитель. Для предварительных испытаний используют реакции окрашивания пламени.
Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.
По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H 2 SO 4 серная кислота, H 2 SO 3 сернистая кислота, HNO 3 азотная кислота, H 3 PO 4 фосфорная кислота, H 2 CO 3 угольная кислота, H 2 SiO 3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H 2 S сероводородная кислота).
В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н). Например, азотная кислота HNO 3 одноосновная, так как в молекуле её один атом водорода, серная кислота H 2 SO 4 – двухосновная и т.д.
Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.
Часть молекулы кислоты без водорода называется кислотным остатком.
Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO 3, -PO 4, -SiO 3) – это сложные остатки.
В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:
H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl
Слово ангидрид означает безводный, то есть кислота без воды. Например,
H 2 SO 4 – H 2 O → SO 3 . Бескислородные кислоты ангидридов не имеют.
Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H 2 SO 4 – серная; H 2 SO 3 – угольная; H 2 SiO 3 – кремниевая и т.д.
Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO 3 – азотная, HNO 2 – азотистая.
Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:
H 2 + Cl 2 → 2 HCl;
H 2 + S → H 2 S.
Растворы полученных газообразных веществ HCl и H 2 S и являются кислотами.
При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.
Химические свойства кислот
Растворыв кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества – индикаторы позволяют определить присутствие кислоты.
Индикаторы – это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами . В нейтральных растворах - они имеют одну окраску, в растворах оснований – другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус – тоже в красный цвет.
Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):
H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.
Взаимодействуют с основанными оксидами с образованием воды и соли (реакция нейтрализации). Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:
H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.
Взаимодействуют с металлами.
Для взаимодействия кислот с металлами должны выполнятся некоторые условия:
1. металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;
2. кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H +).
При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):
Zn + 2HCl → ZnCl 2 + H 2 ;
Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.
Остались вопросы? Хотите знать больше о кислотах?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!
blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Кислоты можно классифицировать исходя из разных критериев:
1) Наличие атомов кислорода в кислоте
2) Основность кислоты
Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:
4) Растворимость
5) Устойчивость
7) Окисляющие свойства
Химические свойства кислот
1. Способность к диссоциации
Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:
либо в таком виде: HCl = H + + Cl —
либо в таком: HCl → H + + Cl —
По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.
В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:
CH 3 COOH CH 3 COO — + H +
Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :
H 3 PO 4 H + + H 2 PO 4 —
H 2 PO 4 — H + + HPO 4 2-
HPO 4 2- H + + PO 4 3-
Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H 3 PO 4 диссоциируют лучше (в большей степени), чем ионы H 2 PO 4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO 4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .
Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:
H 2 SO 4 2H + + SO 4 2-
2. Взаимодействие кислот с металлами
Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H 2 SO 4(конц.) и HNO 3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:
H 2 SO 4(разб.) + Zn ZnSO 4 + H 2
2HCl + Fe FeCl 2 + H 2
Что касается кислот-сильных окислителей, т.е. H 2 SO 4 (конц.) и HNO 3 , то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.
3. Взаимодействие кислот с основными и амфотерными оксидами
Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:
H 2 SO 4 + ZnO ZnSO 4 + H 2 O
6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O
H 2 SiO 3 + FeO ≠
4. Взаимодействие кислот с основаниями и амфотерными гидроксидами
HCl + NaOH H 2 O + NaCl
3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O
5. Взаимодействие кислот с солями
Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:
H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3
CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O
HCOONa + HCl HCOOH + NaCl
6. Специфические окислительные свойства азотной и концентрированной серной кислот
Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).
Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO 3 и концентрированной H 2 SO 4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.
В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.
Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:
7. Восстановительные свойства бескислородных кислот
Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:
4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O
18HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2
14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O
Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.
6HI + Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O
2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl
Высокой восстановительной активностью обладает также и сероводородная кислота H 2 S. Ее может окислить даже такой окислитель, как диоксид серы.
Не стоит недооценивать роль кислот в нашей жизни, ведь многие из них просто незаменимы в повседневной жизни . Для начала давайте вспомним, что такое кислоты. Это сложные вещества. Формула записывается следующим образом: HnA, где H – водород, n – количество атомов, А – кислотный остаток.
К основным свойствам кислот относят возможность заменять молекулы атомов водорода на атомы металлов. Большинство из них не только едкие, а и очень ядовитые. Но есть и такие, с которыми мы сталкиваемся постоянно, без вреда для своего здоровья: витамин С, лимонная кислота, молочная кислота. Рассмотрим основные свойства кислот.
Физические свойства
Физические свойства кислот, часто помогают найти ключ для установления их характера. Кислоты могут существовать в трех видах: твердом, жидком и газообразном. Например: азотная (HNO3) и серная кислота (H2SO4) - это бесцветные жидкости; борная (H3BO3) и метафосфорная (HPO3) – твердые кислоты. Некоторые из них имеют цвет и запах. Разные кислоты по-разному растворяются в воде. Есть и нерастворимые: H2SiO3 – кремниевая. Жидкие вещества имеют кислый вкус. Название некоторым кислотам дали плоды, в которых они находятся: яблочная кислота, лимонная кислота. Другие же получили свое название от химических элементов , содержащихся в них.
Классификация кислот
Обычно кислоты классифицируют по нескольким признакам. Самый первый - это, по содержанию кислорода в них. А именно: кислородосодержащие (HClO4 – хлорная) и бескислородные (H2S – сероводородная).
По числу атомов водорода (по основности):
- Одноосновная – содержится один атом водорода (HMnO4);
- Двухосновная – имеет два атома водорода (H2CO3);
- Трехосновные, соответственно, имеют три атома водорода (H3BO);
- Полиосновные – имеют четыре и более атомов, встречаются редко (H4P2O7).
По классам химических соединений , делятся на органические и неорганические кислоты. Первые, в основном, встречаются в продуктах растительного происхождения: уксусная, молочная, никотиновая, аскорбиновая кислоты. К неорганическим кислотам относятся: серная, азотная, борная, мышьяковая. Спектр их применения довольно таки широк от промышленных потребностей (изготовление красителей, электролитов, керамики, удобрений и т.д.) до приготовления пищи или прочистки канализаций. Также кислоты можно классифицировать по силе, летучести, устойчивости и растворимости в воде.
Химические свойства
Рассмотрим основные химические свойства кислот.
- Первое - это взаимодействие с индикаторами. В качестве индикаторов используются лакмус, метилоранж, фенолфталеин и универсальная индикаторная бумага. В растворах кислот окраска индикатора сменит цвет: лакмус и универсальная инд. бумага станут красными, метилоранж – розовым, фенолфталеин останется бесцветным.
- Второе – взаимодействие кислот с основаниями. Такую реакцию еще называют нейтрализацией. Кислота вступает в реакцию с основанием, в результате чего мы имеем соль + вода. Например: H2SO4+Ca(OH)2=CaSO4+2 H2O.
- Так как почти все кислоты хорошо растворяются в воде, нейтрализацию можно проводить как с растворимыми, так и нерастворимыми основаниями . Исключение составляет кремниевая кислота, она почти не растворима в воде. Для ее нейтрализации требуются такие основания, как KOH или NaOH (они растворимы в воде).
- Третье – взаимодействие кислот с основными оксидами. Здесь так же происходит реакция нейтрализации. Основные оксиды являются близкими «родственниками» оснований, следовательно, реакция та же. Мы очень часто используем эти окислительные свойства кислот. Например, для удаления ржавчины с труб. Кислота реагирует с оксидом, превращаясь в растворимую соль.
- Четвертое – реакция с металлами. Не все металлы одинаково хорошо вступают в реакцию с кислотами. Их разделяют на активные (K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn. Pb) и неактивные (Cu, Hg, Ag, Pt, Au). Так же стоит обращать внимание на силу кислоты (сильные, слабые). Например, соляная и серная кислоты способны вступать в реакцию со всеми неактивными металлами, а лимонная и щавелевая кислоты настолько слабы, что очень медленно реагируют даже с активными металлами.
- Пятое – реакция кислородосодержащих кислот на нагревание. Почти все кислоты этой группы при нагревании распадаются на кислородный оксид и воду. Исключение составляют угольная (H3PO4) и сернистая кислоты (H2SO4). При нагревании они распадаются на воду и газ. Это надо запомнить. Вот и все основные свойства кислот.
7. Кислоты. Соли. Взаимосвязь между классами неорганических веществ
7.1. Кислоты
Кислоты - это электролиты, при диссоциации которых в качестве положительно заряженных ионов образуются только катионы водорода H + (точнее - ионы гидроксония H 3 O +).
Другое определение: кислоты - это сложные вещества, состоящие из атома водорода и кислотных остатков (табл. 7.1).
Таблица 7.1
Формулы и названия некоторых кислот, кислотных остатков и солей
Формула кислоты | Название кислоты | Кислотный остаток (анион) | Название солей (средних) |
---|---|---|---|
HF | Фтористоводородная (плавиковая) | F − | Фториды |
HCl | Хлористоводородная (соляная) | Cl − | Хлориды |
HBr | Бромистоводородная | Br − | Бромиды |
HI | Иодистоводородная | I − | Иодиды |
H 2 S | Сероводородная | S 2− | Сульфиды |
H 2 SO 3 | Сернистая | SO 3 2 − | Сульфиты |
H 2 SO 4 | Серная | SO 4 2 − | Сульфаты |
HNO 2 | Азотистая | NO 2 − | Нитриты |
HNO 3 | Азотная | NO 3 − | Нитраты |
H 2 SiO 3 | Кремниевая | SiO 3 2 − | Силикаты |
HPO 3 | Метафосфорная | PO 3 − | Метафосфаты |
H 3 PO 4 | Ортофосфорная | PO 4 3 − | Ортофосфаты (фосфаты) |
H 4 P 2 O 7 | Пирофосфорная (двуфосфорная) | P 2 O 7 4 − | Пирофосфаты (дифосфаты) |
HMnO 4 | Марганцевая | MnO 4 − | Перманганаты |
H 2 CrO 4 | Хромовая | CrO 4 2 − | Хроматы |
H 2 Cr 2 O 7 | Дихромовая | Cr 2 O 7 2 − | Дихроматы (бихроматы) |
H 2 SeO 4 | Селеновая | SeO 4 2 − | Селенаты |
H 3 BO 3 | Борная | BO 3 3 − | Ортобораты |
HClO | Хлорноватистая | ClO – | Гипохлориты |
HClO 2 | Хлористая | ClO 2 − | Хлориты |
HClO 3 | Хлорноватая | ClO 3 − | Хлораты |
HClO 4 | Хлорная | ClO 4 − | Перхлораты |
H 2 CO 3 | Угольная | CO 3 3 − | Карбонаты |
CH 3 COOH | Уксусная | CH 3 COO − | Ацетаты |
HCOOH | Муравьиная | HCOO − | Формиаты |
При обычных условиях кислоты могут быть твердыми веществами (H 3 PO 4 , H 3 BO 3 , H 2 SiO 3) и жидкостями (HNO 3 , H 2 SO 4 , CH 3 COOH). Эти кислоты могут существовать как в индивидуальном (100%-ном виде), так и в виде разбавленных и концентрированных растворов. Например, как в индивидуальном виде, так и в растворах известны H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH.
Ряд кислот известны только в растворах. Это все галогеноводородные (HCl, HBr, HI), сероводородная H 2 S, циановодородная (синильная HCN), угольная H 2 CO 3 , сернистая H 2 SO 3 кислота, которые представляют собой растворы газов в воде. Например, соляная кислота - это смесь HCl и H 2 O, угольная - смесь CO 2 и H 2 O. Понятно, что употреблять выражение «раствор соляной кислоты» неправильно.
Большинство кислот растворимы в воде, нерастворима кремниевая кислота H 2 SiO 3 . Подавляющее число кислот имеют молекулярное строение . Примеры структурных формул кислот:
В большинстве молекул кислородсодержащих кислот все атомы водорода связаны с кислородом. Но есть и исключения:
Кислоты классифицируют по ряду признаков (табл. 7.2).
Таблица 7.2
Классификация кислот
Признак классификации | Тип кислоты | Примеры |
---|---|---|
Число ионов водорода, образующихся при полной диссоциации молекулы кислоты | Одноосновные | HCl, HNO 3 , CH 3 COOH |
Двухосновные | H 2 SO 4 , H 2 S, H 2 CO 3 | |
Трехосновные | H 3 PO 4 , H 3 AsO 4 | |
Наличие или отсутствие в молекуле атома кислорода | Кислородсодержащие (кислотные гидроксиды, оксокислоты) | HNO 2 , H 2 SiO 3 , H 2 SO 4 |
Бескислородные | HF, H 2 S, HCN | |
Степень диссоциации (сила) | Сильные (полностью диссоциируют, сильные электролиты) | HCl, HBr, HI, H 2 SO 4 (разб), HNO 3 , HClO 3 , HClO 4 , HMnO 4 , H 2 Cr 2 O 7 |
Слабые (диссоциируют частично, слабые электролиты) | HF, HNO 2 , H 2 SO 3 , HCOOH, CH 3 COOH, H 2 SiO 3 , H 2 S, HCN, H 3 PO 4 , H 3 PO 3 , HClO, HClO 2 , H 2 CO 3 , H 3 BO 3 , H 2 SO 4 (конц) | |
Окислительные свойства | Окислители за счет ионов Н + (условно кислоты-неокислители) | HCl, HBr, HI, HF, H 2 SO 4 (разб), H 3 PO 4 , CH 3 COOH |
Окислители за счет аниона (кислоты-окислители) | HNO 3 , HMnO 4 , H 2 SO 4 (конц), H 2 Cr 2 O 7 | |
Восстановители за счет аниона | HCl, HBr, HI, H 2 S (но не HF) | |
Термическая устойчивость | Существуют только в растворах | H 2 CO 3 , H 2 SO 3 , HClO, HClO 2 |
Легко разлагаются при нагревании | H 2 SO 3 , HNO 3 , H 2 SiO 3 | |
Термически устойчивы | H 2 SO 4 (конц), H 3 PO 4 |
Все общие химические свойства кислот обусловлены наличием в их водных растворах избытка катионов водорода H + (H 3 O +).
1. Вследствие избытка ионов H + водные растворы кислот изменяют окраску лакмуса фиолетового и метилоранжа на красную, (фенолфталеин окраску не изменяет, остается бесцветным). В водном растворе слабой угольной кислоты лакмус не красный, а розовый, раствор над осадком очень слабой кремниевой кислоты вообще не изменяет окраску индикаторов.
2. Кислоты взаимодействуют с основными оксидами, основаниями и амфотерными гидроксидами, гидратом аммиака (см. гл. 6).
Пример 7.1. Для осуществления превращения BaO → BaSO 4 можно использовать: а) SO 2 ; б) H 2 SO 4 ; в) Na 2 SO 4 ; г) SO 3 .
Решение. Превращение можно осуществить, используя H 2 SO 4:
BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O
BaO + SO 3 = BaSO 4
Na 2 SO 4 с BaO не реагирует, а в реакции BaO с SO 2 образуется сульфит бария:
BaO + SO 2 = BaSO 3
Ответ : 3).
3. Кислоты реагируют с аммиаком и его водными растворами с образованием солей аммония:
HCl + NH 3 = NH 4 Cl - хлорид аммония;
H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - сульфат аммония.
4. Кислоты-неокислители с образованием соли и выделением водорода реагируют с металлами, расположенными в ряду активности до водорода:
H 2 SO 4 (разб) + Fe = FeSO 4 + H 2
2HCl + Zn = ZnCl 2 = H 2
Взаимодействие кислот-окислителей (HNO 3 , H 2 SO 4 (конц)) с металлами очень специфично и рассматривается при изучении химии элементов и их соединений.
5. Кислоты взаимодействуют с солями. Реакция имеет ряд особенностей:
а) в большинстве случаев при взаимодействии более сильной кислоты с солью более слабой кислоты образуется соль слабой кислоты и слабая кислота или, как говорят, более сильная кислота вытесняет более слабую. Ряд убывания силы кислот выглядит так:
Примеры протекающих реакций:
2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2
H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓
2CH 3 COOH + K 2 CO 3 = 2CH 3 COOK + H 2 O + CO 2
3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4
Не взаимодействуют между собой, например, KCl и H 2 SO 4 (разб), NaNO 3 и H 2 SO 4 (разб), K 2 SO 4 и HCl (HNO 3 , HBr, HI), K 3 PO 4 и H 2 CO 3 , CH 3 COOK и H 2 CO 3 ;
б) в некоторых случаях более слабая кислота вытесняет из соли более сильную:
CuSO 4 + H 2 S = CuS↓ + H 2 SO 4
3AgNO 3 (разб) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3 .
Такие реакции возможны тогда, когда осадки полученных солей не растворяются в образующихся разбавленных сильных кислотах (H 2 SO 4 и HNO 3);
в) в случае образования осадков, нерастворимых в сильных кислотах, возможно протекание реакции между сильной кислотой и солью, образованной другой сильной кислотой:
BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl
Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3
AgNO 3 + HCl = AgCl↓ + HNO 3
Пример 7.2. Укажите ряд, в котором приведены формулы веществ, которые реагируют с H 2 SO 4 (разб).
1) Zn, Al 2 O 3 , KCl (p-p); 3) NaNO 3 (p-p), Na 2 S, NaF;2) Cu(OH) 2 , K 2 CO 3 , Ag; 4) Na 2 SO 3 , Mg, Zn(OH) 2 .
Решение. С H 2 SO 4 (разб) взаимодействуют все вещества ряда 4):
Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2
Mg + H 2 SO 4 = MgSO 4 + H 2
Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O
В ряду 1) неосуществима реакция с KCl (p-p), в ряду 2) - с Ag, в ряду 3) - с NaNO 3 (p-p).
Ответ : 4).
6. Очень специфически в реакциях с солями ведет себя концентрированная серная кислота. Это нелетучая и термически устойчивая кислота, поэтому из твердых (!) солей вытесняет все сильные кислоты, так как они более летучие, чем H 2 SO 4 (конц):
KCl (тв) + H 2 SO 4 (конц) KHSO 4 + HCl
2KCl (тв) + H 2 SO 4 (конц) K 2 SO 4 + 2HCl
Соли, образованные сильными кислотами (HBr, HI, HCl, HNO 3 , HClO 4), реагируют только с концентрированной серной кислотой и только находясь в твердом состоянии
Пример 7.3. Концентрированная серная кислота, в отличие от разбавленной, реагирует:
3) KNO 3 (тв);
Решение. С KF, Na 2 CO 3 и Na 3 PO 4 реагируют обе кислоты, а с KNO 3 (тв) - только H 2 SO 4 (конц).
Ответ : 3).
Способы получения кислот весьма разнообразны.
Бескислородные кислоты получают:
- растворением в воде соответствующих газов:
HCl (г) + H 2 O (ж) → HCl (p-p)
H 2 S (г) + H 2 O (ж) → H 2 S (р-р)
- из солей вытеснением более сильными или менее летучими кислотами:
FeS + 2HCl = FeCl 2 + H 2 S
KCl (тв) + H 2 SO 4 (конц) = KHSO 4 + HCl
Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3
Кислородсодержащие кислоты получают:
- растворением соответствующих кислотных оксидов в воде, при этом степень окисления кислотообразующего элемента в оксиде и кислоте остается одинаковой (исключение - NO 2):
N 2 O 5 + H 2 O = 2HNO 3
SO 3 + H 2 O = H 2 SO 4
P 2 O 5 + 3H 2 O 2H 3 PO 4
- окислением неметаллов кислотами-окислителями:
S + 6HNO 3 (конц) = H 2 SO 4 + 6NO 2 + 2H 2 O
- вытеснением сильной кислоты из соли другой сильной кислоты (если выпадает нерастворимый в образующихся кислотах осадок):
Ba(NO 3) 2 + H 2 SO 4 (разб) = BaSO 4 ↓ + 2HNO 3
AgNO 3 + HCl = AgCl↓ + HNO 3
- вытеснением летучей кислоты из ее солей менее летучей кислотой.
С этой целью чаще всего используют нелетучую термически устойчивую концентрированную серную кислоту:
NaNO 3 (тв) + H 2 SO 4 (конц) NaHSO 4 + HNO 3
KClO 4 (тв) + H 2 SO 4 (конц) KHSO 4 + HClO 4
- вытеснением более слабой кислоты из ее солей более сильной кислотой:
Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4
NaNO 2 + HCl = NaCl + HNO 2
K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓