Круг на 6 равных частей. Урок «Деление окружности на равные части
Деление окружности на три равные части. Устанавливают угольник с углами 30 и 60° большим катетом параллельно одной из центровых линий. Вдоль гипотенузы из точки 1 (первое деление) проводят хорду (рис. 2.11, а ), получая второе деление – точку 2. Перевернув угольник и проведя вторую хорду, получают третье деление – точку 3 (рис. 2.11, б ). Соединив точки 2 и 3; 3 и 1 прямыми, получают равносторонний треугольник.
Рис. 2.11.
а, б – с помощью угольника; в – с помощью циркуля
Ту же задачу можно решить с помощью циркуля. Поставив опорную ножку циркуля в нижний или верхний конец диаметра (рис. 2.11, в ), описывают дугу, радиус которой равен радиусу окружности. Получают первое и второе деления. Третье деление находится на противоположном конце диаметра.
Деление окружности на шесть равных частей
Раствор циркуля устанавливают равным радиусу R окружности. Из концов одного из диаметров окружности (из точек 1, 4 ) описывают дуги (рис. 2.12, а, б ). Точки 1, 2, 3, 4, 5, 6 делят окружность на шесть равных частей . Соединив их прямыми, получают правильный шестиугольник (рис. 2.12, б ).
Рис. 2.12.
Ту же задачу можно выполнить с помощью линейки и угольника с углами 30 и 60° (рис. 2.13). Гипотенуза угольника при этом должна проходить через центр окружности.
Рис. 2.13.
Деление окружности на восемь равных частей
Точки 1, 3, 5, 7 лежат на пересечении центровых линий с окружностью (рис. 2.14). Еще четыре точки находят с помощью угольника с углами 45°. При получении точек 2, 4, 6, 8 гипотенуза угольника проходит через центр окружности.
Рис. 2.14.
Деление окружности на любое число равных частей
Для деления окружности на любое число равных частей пользуются коэффициентами, приведенными в табл. 2.1.
Длину l хорды, которую откладывают на заданной окружности, определяют по формуле l = dk, где l – длина хорды; d – диаметр заданной окружности; k – коэффициент, определяемый по табл. 1.2.
Таблица 2.1
Коэффициенты для деления окружностей
Чтобы разделить окружность заданного диаметра 90 мм, например, на 14 частей, поступают следующим образом.
В первой графе табл. 2.1 находят число делений п, т.е. 14. Из второй графы выписывают коэффициент k, соответствующий числу делений п. В данном случае он равен 0,22252. Диаметр заданной окружности умножают на коэффициент и получают длину хорды l= dk = 90 0,22252 = 0,22 мм. Полученную длину хорды откладывают циркулем-измерителем 14 раз на заданной окружности.
Нахождение центра дуги и определение величины радиуса
Задана дуга окружности, центр и радиус которой неизвестны.
Для их определения нужно провести две непараллельные хорды (рис. 2.15, а ) и восставить перпендикуляры к серединам хорд (рис. 2.15, б ). Центр О дуги находится на пересечении этих перпендикуляров.
Рис. 2.15.
Сопряжения
При выполнении машиностроительных чертежей, а также при разметке заготовок деталей на производстве часто приходится плавно соединять прямые линии с дугами окружностей или дугу окружности с дугами других окружностей, т.е. выполнять сопряжение.
Сопряжением называют плавный переход прямой в дугу окружности или одной дуги в другую.
Для построения сопряжений надо знать величину радиуса сопряжений, найти центры, из которых проводят дуги, т.е. центры сопряжений (рис. 2.16). Затем нужно найти точки, в которых одна линия переходит в другую, т.е. точки сопряжений. При построении чертежа сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения дуги окружности и прямой лежит на перпендикуляре, опущенном из центра дуги на сопрягаемую прямую (рис. 2.17, а ), или на линии, соединяющей центры сопрягаемых дуг (рис. 2.17, б ). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку ( точки ) сопряжения.
Рис. 2.16.
Рис. 2.17.
Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 2.18, а ). Нужно построить сопряжения этих прямых дугой заданного радиуса R.
Рис. 2.18.
Для всех трех случаев можно применять следующее построение.
1. Находят точку О – центр сопряжения, который должен лежать на расстоянии R от сторон угла, т.е. в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 2.18, б ).
Для проведения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные (рис. 2.18, б ).
- 2. Находят точки сопряжений (рис. 2.18, в). Для этого из точки О опускают перпендикуляры на заданные прямые.
- 3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 2.18, в).
Во время ремонта часто приходится иметь дело с окружностями, особенно если хочется создать интересные и оригинальные элементы декора. Также часто приходится делить их на равные части. Чтобы сделать это есть несколько методов. Например, можно нарисовать правильный многоугольник или использовать известные всем еще со школы инструменты. Так, для того чтобы разделить окружность на равные части понадобятся сама окружность с четко определенным центром, карандаш, транспортир, а также линейка и циркуль.
Деление окружности при помощи транспортира
Разделение окружности на равные части при помощи вышеупомянутого инструмента является, пожалуй, самым простым. Известно, что окружность – это 360 градусов. Разделив это значение на нужное количество частей можно узнать, сколько будет занимать каждая часть (см. фото).
Далее, начиная с любой точки, можно сделать пометки, соответствующие проведенным расчетам. Этот метод хорош, когда окружность нужно разделить на 5, 7, 9 и т.д. частей. Например, если фигуру необходимо разделить на 9 частей, отметки будут находиться на 0, 40, 80, 120, 160, 200, 240, 280 и 320 градусах.
Деление на 3 и 6 частей
Чтобы правильно разделить окружность на 6 частей можно использовать свойство правильного шестиугольника, т.е. его самая длинная диагональ должна составлять две длины его стороны. Для начала циркуль необходимо растянуть на длину равную радиусу фигуры. Далее оставляя одну из ножек инструмента в любой точке окружности, второй необходимо сделать засечку, после чего повторяя манипуляции, получится сделать шесть точек, соединив которые можно получить шестиугольник (см. фото).
Соединив вершины фигуры через одну, можно получить правильный треугольник, а соответственно фигуру можно поделить на 3 равные части, а соединив все вершины и проведя через них диагонали можно разделить фигуру на 6 частей.
Деление на 4 и 8 частей
Если окружность необходимо поделить на 4 равные части, прежде всего, необходимо начертить диаметр фигуры. Это позволит получить сразу две из нужных четырех точек. Далее нужно взять циркуль, растянуть его ножки по диаметру, после чего одну из них оставить на одном из концов диаметра, а другой сделать засечки за пределами круга снизу и сверху (см. фото).
То же необходимо сделать и для другого конца диаметра. После этого полученные за пределами круга точки соединяются при помощи линейки и карандаша. Полученная линия будет вторым диаметром, который будет идти четко перпендикулярно первому, в результате чего фигура будет поделена на 4 части. Для того чтобы получить, например, 8 равных частей, полученные прямые углы можно разделить пополам и провести через них диагонали.
Сегодня в посте выкладываю несколько картинок кораблей и схем к ним для вышивания изонитью (картинки кликабельные).
Изначально второй парусник выполнен на гвоздиках. А поскольку гвоздик имеет определенную толщину, получается, что от каждого отходит две нитки. Плюс к этому наслоение одного паруса на второй. В итоге в глазах возникает некоторый эффект раздвоения изображения. Если вышивать корабль на картоне, думаю, он будет выглядеть более привлекательно.
Второй и третий кораблики вышивать несколько проще, чем первый. В каждом из парусов есть центральная точка (на нижней стороне паруса), из которой выходят лучи к точкам по периметру паруса.
Анекдот
:
— У вас нитки есть?
— Есть.
— А суровые?
— Да кошмар просто! Подойти боюсь!
У меня дебют – первый мастер-класс . Надеюсь, не последний. Будем вышивать павлина. Схема изделия .Размечая места проколов, обратите особое внимание , чтобы в замкнутых контурах их было четное количество .Основа картинки – плотный картон (я брал коричневый плотностью 300 г/м2, можно попробовать и на черном, тогда цвета буду смотреться еще ярче), лучше прокрашенный с обеих сторон (для киевлян - я брал в отделе канцтоваров в ЦУМе на Крещатике). Нитки - мулине (любого производителя, у меня были DMC), в одну нитку, т.е. пучки разматываем на отдельные волокна. Вышивка состоит из трех слоев ниток. Сначала вышиваем методом настила первый слой в перышках на голове павлина, крыло (светло-голубой цвет ниток), а также темно-синие круги хвоста. Первый слой туловища вышивается хордами с переменным шагом, стараясь, чтобы нитки проходили по касательной к контуру крыла. Затем вышиваем веточки (шов-змейка, нитки горчичного цвета), листья (сначала темно-зеленые, потом остальн…
И построение правильных вписанных многоугольников
Деление окружности на 3, 6 и 12 равных частей. Построение правильного вписанного треугольника, шестиугольника и двенадцатиугольника.
Для построения правильного вписанного треугольника надо из точки А пересечения центровой линии с окружностью отложить размер, равный радиусу R, в одну и другую сторону. Получим вершины 1 и 2( рис. 26, а ). Вершина 3 лежит на противоположном точке А конце диаметра.
1/3 1/6 1/12
а) б) в)
Рис. 26
Сторона шестиугольника равна радиусу окружности. Деление на 6 частей показано на рис. 26, б.
Для того чтобы разделить окружность на 12 частей, надо размер, равный радиусу, отложить на окружности в одну и другую сторону из четырех центров (рис. 26, в).
Деление окружности на 4 и 8
вписанного четырехугольника и восьмиугольника.
Рис. 27
На 4 части окружность делится двумя взаимно перпендикулярными центровыми линиями. Для деления на 8 частей надо дугу, равную четверти окружности, разделить пополам ( рис.27.)
Деление окружности на 5 и 10 равных частей. Построение правильного
вписанного пятиугольника и десятиугольника.
1/5 1/10
а) б)
Рис. 28
Половину любого диаметра (радиус) делят пополам ( рис. 28, а ), получают точку N. Из точки N, как из центра, проводят дугу радиусом R 1 , равным расстоянию от точки N до точки А , до пересечения со второй половиной этого диаметра, в точке Р. Отрезок АР равен хорде, стягивающей дугу, длина которой равна 1/5 длины окружности. Делая засечки на окружности радиусом R 2 , равным отрезку АР, делят окружность на пять равных частей. Начальную точку выбирают в зависимости от расположения пятиугольника. ( ! Нельзя выполнять засечки в одну сторону, так как происходит набегание ошибок и последняя сторона пятиугольника получается перекошенной.)
Деление окружности на 10 равных частей выполняют аналогично делению окружности на пять равных частей ( рис. 28, б ), но сначала делят окружность на пять частей, начиная построение из точки А, а затем из точки В, находящейся на противоположном конце диаметра. Можно использовать для построения отрезок ОР – длина которого равна хорде 1/10 длины окружности.
Деление окружности на 7 равных частей.
1/7
а) б) в)
Рис. 29
Из любой точки (например, А ) окружности, радиусом заданной окружности рповодят дугу до пересечения с окружностью в точках В и D (рис. 29,а). Соединив точки В и D прямой, получают отрезок ВС, равный хорде, которая стягивает дугу, составляющую 1/7 длины окружности. Засечки выполняют в последовательности, указанной на рис. 29 б .
Сопряжения
Часто в конструкции деталей одна поверхность переходит в другую. Обычно эти переходы делают плавными, что повышает прочность деталей и делает их более удобными в работе. Сопряжение – это плавный переход от одной линии к другой. Построение сопряжений сводится к трем моментам: 1)определение центра сопряжения; 2)нахождение точек сопряжения; 3)построение дуги сопряжения заданного радиуса. Для построения сопряжения чаще всего задан радиус сопряжения. Центр и точка сопряжения определяются графически.
С помощью циркуля и линейки можно разделить окружность не на любое число частей. Математики доказали, что на 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17,…, 257,…частей разделить можно, на 7, 9, 11, 13, 14, … частей нельзя.
К сожалению, нет единого способа деления. Приведем самые главные.
1) Деление окружности на 6, 3, 12, 24, …, 3×2 k (k=0,1,2,3,…) равных частей.
Начинаем с деления окружности на 6 частей . Для этого тем же раствором циркуля, которым проводилась окружность, из любой точки окружности, как из центра, надо провести окружность. Затем повторить процедуру, взяв в качестве центра точку пересечения начальной и новой окружностей.
Чтобы поделить окружность на 3 части, надо поделить ее на 6 частей и взять точки через одну (рис. 5а). Чтобы поделить окружность на 12 частей, надо поделить ее на 6 частей и каждую дугу поделить пополам, далее процесс деления дуг пополам можно продолжать неограниченно.
Длина перпендикуляра, опущенного из центра окружности на сторону шестиугольника, является неплохим приближением для длины стороны семиугольника, вписанного в окружность (на рисунке 5а показан штриховкой). Длина перпендикуляра ≈0,866R, длина стороны семиугольника ≈0,868R – точность ≈2%.
2) Деление окружности на 2, 4, 8, 16,…, 2 k (k=1,2,3,…) равные части.
Разделить окружность на 2 части с помощью линейки можно, проведя прямую через центр окружности. Но можно от любой точки окружности 3 раза отложить радиус круга. Начальная и конечная точки делят окружность пополам (через них можно провести диаметр - рис. 5а). Чтобы поделить окружность на 4 части, надо поделить пополам полученные дуги. Последовательное выполнение деления полученных дуг пополам обеспечивает деление окружности на 8, 16 и т.д. частей.
3) Деление окружности на 5 частей.
Принятый в черчении способ построения использует соотношение между стороной правильного десятиугольника ( а 10 )и правильного пятиугольника ( а 5 )- a 5 2 =R 2 +a 10 2 . Выполняется построение следующим образом. Проведем 2 перпендикулярные прямые через центр окружности О. А и В – точки их пересечения с окружностью. Из точки А, как из центра, проведем окружность того же радиуса (найдем середину отрезка АО – точку С). Из середины отрезка АО точки С проведем еще одну окружность радиуса СВ. Отрезок ВЕ – равен стороне пятиугольника, ОЕ – десятиугольника (рис. 5б).
Можно делить окружность на 5 и 10 частей способом, изображенным на рисунке 5в. Отрезок ВС - сторона пятиугольника, АС - десятиугольника. О замечательных свойствах пятиугольника и десятиугольника и о том, почему верен способ построения, приведенный на рисунке 5в, мы расскажем в следующей главе.
МедресеКукельдаш (XVIв., Ташкент)
Рисунок 5г демонстрирует прием приближенного геомет-рического решения задачи о делении окружности на любое число частей. Пусть, например, требуется разделить данную окружность на 7 равных частей. Построим на диаметре окружности АВ равносторонний треугольник АВС и разделим диаметр АВ точкой D в отношении AD:AB=2:7 (в общем случае 2:n). Для этого надо провести вспомогательную прямую, на ней отложить n+2 одинаковых отрезка, крайнюю точку соединить с точкой В и через вторую точку провести прямую, параллельную прямой BF. Проведем прямую DC до пересечения с окружностью. Дуга АЕ будет составлять 7-ую часть окружности (в общем случае n-ю ). Этот метод при n<11 дает погрешность не более 1%.
Алгоритмы деления окружности на равные части можно использовать, например, для построения опорных точек спиралей - спирали Архимеда, названной так в честь великого древнегреческого ученого Архимеда (III в. до н.э.), впервые изучившего эту линию, и логарифмической спирали.