Фторопласт (тефлон) — уникальный химически стойкий материал. Химические и физические свойства тефлона
Овен по гороскопу. Если бы астрологические характеристики приписывали вещам, тефлон характеризовали бы, как стойкий, упорный, горячный. В этом есть доля правды.
«Родился» материал тефлон 6-го апреля 1938-го года в ходе опытов Роя Планкетта. В те поры он работал в лаборатории DuPont. К 21-му веку эта американская компания подошла со званием одной из крупнейших в мире в области химического производства.
На фото Рой Планкетт, учёный, открывший тефлон
Рой Планкетт взялся изучать свойства фреонов. Так именуют соединения метана с этаном, в которых на место встают или . Тефлон из фреонов вышел случайно. Узнаем как.
Что такое тефлон?
По науке герой именуется политетрафторэтиленом. в его молекулах заменен фтором. Формула тефлона: — СF 4 . Материал получен заморозкой под давлением тетрафторэтилена с формулой С 2 F 4 . Получился порошок, напоминающий измельченный воск. Его-то и нарекли тефлоном.
Фторопласт – второе имя тефлона, применимое и к прочим полимерам, в состав коих входит фтор. По сути, это пластмассы. Тефлону среди фторопластов присвоен порядковый номер 4. В Англии, материал кличут фуболом.
На фото тефлоновые детали
Итальянцы называют тефлон альгофлоном, а японцы полифлоном. Французы употребляют понятие сорефлон. Даже в США есть второе название материала – галлон. Лишь в «прижилось» первоначальное название. Производить тефлон в промышленных масштабах, кстати, начали уже через 2 года после открытия Роя Планкетта.
Свойства, описание и особенности тефлона
Свойства тефлона , во многом объясняются его принадлежностью к пластмассам. Выделяется материал из них особопрочным соединением атомов с фтором.
Последние как бы прикрывают первые, обеспечивая устойчивость политетрафторэтилена к спиртам, сложным эфирам, и кетонам. Под последними понимают органику, в которой к карбонильной связке присоединены 2 углеводородных радикала.
Теперь, о реакциях, в которые покрытие тефлон вступает. Под давлением и нагревом возможно взаимодействие с флюоритами. В ряд минералов группы входят фтор и хлор. С ними-то и запускается реакция.
Общая же формула может быть, к примеру, такой: — СаF 2 . Набирать массу тефлон начинает лишь при обработке хладагентами. Взаимодействие с фреоном, к примеру, увеличивает вес героя статьи на 4-10%. Процесс обратим.
Взаимодействие тефлона возможно и с металлами щелочного ряда. Они располагаются в 1-ой группе таблицы . Следовательно, разговор идет о унуненнии, и . Реакция тефлона с ними незначительна. Меняется цвет героя статьи. Из белого он становится коричневым.
Купить тефлон стремятся не только благодаря практически универсальной устойчивости к химии, но и такой же стойкости по отношению к погодным условиям, свету, воде. Так, гигроскопичность, то есть способность вбирать в себя влагу, у героя статьи равна нолю. Материал можно хранить в воде.
Сковорода с тефлоновым покрытием
Нейтральность тефлона касается и физиологических параметров. Полимер вводили в живые ткани. Импланты были приняты ими не хуже титановых. Значит, сковорода с тефлоновым покрытием не несет угрозы здоровью даже при отщеплении частиц напыления и их смешивании с пищей.
Документально безопасность героя статьи подтверждена допуском от Комитета пищевой и лекарственной промышленности Соединенных Штатов и Федерального союза оптовой и внешней торговли . Последняя страна, как и США – лидер мирового производства тефлона.
Ряд независимых экспертов с заключениями FDA и BGA не согласен. Химики замечают, что на заводах DuPont персонал, работающий с тефлоном, обязывают защитные .
Это рассматривается как указание на токсичность материала. Особенно канцерогенны летучий или жидкий тефлон . Испаряться вещество должно при температуре от 270-ти градусов.
Однако, низкокачественный тефлон, замечают , разлагается и при 200-от по шкале Цельсия. Но, вернемся к доводам официальных исследовательских центров.
Так, эксперты Всемирной организации здравоохранения доказали опытным путем , что 25-процентная добавка тефлона от общей массы пищи безвредна для . На производстве получают больше испарений, поэтому и носят .
Говорящие о вреде тефлона ссылаются на способность накапливаться в крови петрофтороктановой . Это канцероген, входящий в состав героя статьи. О способности соединения накапливаться в тканях заявили калифорнийские химики.
Они исследовали беременных женщин. Цель изучения не была связана с тефлоном. Однако, обратило на себя внимание присутствие в крови женщин той самой тетрофтороктановой .
Стали расспрашивать дам о питании, способах готовки. «Всплыли» мультиварка-тефлон , сковороды и противни с ним. В общем, вопрос безвредности политетрафторэтилена спорен. Перейдем к объективному.
У тефлона самый низкий среди веществ коэффициент трения. Это не только сковороды уберегает от износа, но и детали многих машин. В них используется смазка с тефлоном .
Полироль с тефлоном для автомобилей
Она добавляется, к примеру, в автомобильные масла. Можно купить и полироль с тефлоном. Политетрафторэтилен содержится в десятках торговых позиций. Сковороды да мультиварки – лишь вершина «айсберга». Спустимся к подножью.
Применение тефлона
Тефлоновые сальники – часть гидравлических систем и трубопроводов. Подшипники с героем статьи используются в авиационной технике и станкостроении.
Материал пригождается в узлах, подвергающихся большим нагрузкам, а следовательно, и износу. Как и сковороды, подшипники с тефлоном лишь покрыты им. Внутри деталей – металл, как правило, это .
В строительстве пластины из фторопласта – элементы эстакад, мостов и путепроводов. Они состоят из пролетов. Для надежности конструкций требуется возможность их смещения. Это особенно важно в сейсмоактивных местностях.
Тефлоновые изделия
Скольжение по тефлону позволяет пролетам откликаться на вибрации. Поэтому же пластины фторопласта используют в местах крепления балок перекрытия в некоторых высотных зданиях.
Успешные эксперименты по вживлению тефлона в организм позволили использовать политетрафторэтилен в качестве составной протезов. Искусственные сосуды, и вовсе, полностью состоят из героя статьи. Отменно из тефлона получаются и клапаны . Понемногу тефлон вытесняет из сферы протезирования титан.
Последний тяжелее политетрафторэтилена, что уже накладывает ряд ограничений на жизнедеятельность людей с металлическими имплантами. К тому же, у тефлона лучше звукопроводимость. Это пригождается, к примеру, в слуховых аппаратах.
В пищевой промышленности тефлон покрывает трубопроводы и сальники в насосах. Последние по первым перекачивают растительные , жиры, молоко и эмульгатор лецитин.
Так что, если герой статьи токсичен, грешить на присутствие вещества в крови нужно не только из-за домашних сковородок. С другой стороны, широкое применение тефлона в пищевой промышленности успокаивает.
Тефлоновое покрытие автомобиля
Вряд ли производители станут травить население, среди которого есть их дети, родители, друзья. К тому же, тефлоновое покрытие не из самых дешевых. Использование материала связано с его плюсами, которые перевешивают цену.
В химической промышленности тефлон тоже выстилает трубопроводы. Покрывать политетрафторэтиленом все невыгодно. Слой тефлона имеется лишь в трубопроводах, по которым перегоняют химическиагрессивные жидкости.
Стойкость к ним доказывает и использование героя статьи в атомных реакторах колонного типа. Колонным он назван из-за цилиндрической формы агрегатов.
Применяют политетрафторэтилен и в электротехнических приборах. В большинстве материал служит диэлектриком. Так именуют субстанции, блокирующие ток.
Утюг с тефлоновым покрытием эксплуатирует антипригарные свойства пластика. Это препятствует порче нежных и чувствительных к жару материй. Не остается и нагара, типичного для металлических подошв .
Утюг с тефлоновым покрытием
Минусом политетрафторэтилена на утюгах является то же, что и на сковородах. Гладильная доска с тефлоном тоже в списке. Покрытие легко царапается. На одежде бывают твердые и острые элементы, к примеру, пайетки, пуговицы.
Вещи с ними приходится гладить другими утюгами и на других досках. Соответственно, можно иметь технику с политетрафторэтиленом. Но, гладильная доска «Ника» тефлон будет в списке лишь вспомогательной, дополнительной.
Уязвимость героя статьи в плане царапин ставит потребителей перед вопросом: — « Тефлон или керамика ?» Последняя терпит больший нагрев, почти до 500-от градусов и экологичнее, ведь состоит из песка, камня и прочих природных компонентов.
Гладильная доска с тефлоновым покрытием
Однако, резкие перепады температур керамика не терпит. Многие привыкли засовывать еще раскаленную посуду в раковину под струю воды. Керамическое покрытие потрескается, как и при опускании в сковороду замороженного мяса.
А вот утюги, да гладильные доски с керамикой – отличный . Гладить замороженную одежду в голову никому не приходит, как и мыть технику под проточной водой. При этом, керамика в разы тверже тефлона, устойчивее к царапинам.
Керамикой не покрыть одежду. Каменный материал тяжелый. А вот ткань-тефлон существует. Как и в прочей продукции, политетрафторэтилен – лишь покрытие материи. Такую часто используют в комплектах для спорта и активного отдыха.
Технологи пользуются легкостью тефлона и его водоотталкивающими свойствами. Ветер ткань с покрытием тоже способна задержать. Отсюда не только красивые, но и теплые одеяния для горнолыжников, альпинистов.
Скатерть с тефлоном не впитывает воду
Ткань с политетрафторэтиленом находит применение и на кухне. Скатерть с тефлоном отталкивает жиры, пыль, вино подобно покрытию на сковородках. Жидкости собираются в капельки, вместо того чтобы впитываться.
Пыль ложится тонкой пленкой на поверхности, а не застревает меж волокнами материи. В итоге, можно протереть скатерть губкой, а не замачивать и застирывать, выгоняя загрязнения из глубин ткани.
Цена тефлона и отзывы о нем
Стоимость тефлона зависит от вида продукции и толщины покрытия на ней. Соответственно, откидываем основу, остается лишь пленка из политетрафторэтилена. Ее цену и узнаем. Рулон, напоминающий скотч шириной 8 сантиметров и длиной 8 метров стоит 300-400 рублей при толщине пленки в 0,1 миллиметра.
Зависит цена тефлона и от присутствия в нем наполнителей. Стекловолокно, к примеру, увеличивает твердость пластика. Добавляют в тефлон и порошок стали, графит, .
Наполнители меняют свойства политетрафторэтилена. Поэтому, выбирая продукцию с ним, рекомендовано ориентироваться на состав покрытия. О том, что оно бывает разным, знают единицы.
Эксперты считают, что с сим связано большинство гневных отзывов о тефлоне. Меж тем, нужно лишь правильно подобрать свой вариант. Впрочем, порой, он не связан с тефлоном. Так, на одном из интернет-форумов Diman823 пишет: — «Я тефлоном кузов машины покрыл.
Полируют вручную. Первые недели к машине ни одна пылинка ни липла. Сверкала тачка, как зеркало. Потом начались царапины. Стал выяснять. Говорят, укрепителей для полиролей с тефлоном нет.
Защитное действие тефлонового покрытия от воды
Альтернативой является жидкое , да только вот в моем салоне его не делают. Списался в сети, хвалят. Тефлоном же авто нужно пару раз в месяц полировать. В копеечку вылетает».
Тверичанка тоже прикупила тефлон. Отзыв женщина оставила на «Отзовике». Машину Тверичанка не полировала, сосредоточилась на женских заботах, а именно, на листах для выпечки. Модели из тефлона позволяют делать пирожки да пиццы без смазки противней , легко чистятся, удобны в хранении.
Череду отзывов можно продолжать и продолжать, как и список вещей, в которых тефлон применяется. Однако, официально «тефлон» — покрытие продукции DuPont. Эта компания запатентовала материал.
Прочие используют иные смеси на основе того же политетрафторэтилена. С разнообразием примесей к нему связано и разнообразие отзывов. Не каждое антипригарное покрытие, к примеру, – тефлон. Потребители же ждут от покупки качества DuPont. Вот и конфликт ожидаемого с получаемым.
140 000- 500 000. получают полимеризацией тетрафторэтилена в присутствии пероксидных инициаторов.
В СССР выпускался под торговой маркой «фторлон» . Корпорация DuPont является правообладателем на использование торговой марки тефлон .
Свойства и применение политетрафторэтилена
Политетрафторэтилен (фторопласт-4) представляет собой белый порошок плотностью 2250-2270 кг/м 3 и насыпной плотностью 400-500 кг/м 3 . Молекулярная масса его равна 140 000- 500 000 .
Фторопласт-4 - кристаллический полимер со 80-85% , температурой плавления 327 °С и аморфной части около - 120 °С . При нагревании политетрафторэтилена степень кристалличности уменьшается, при 370 °С он превращается в аморфный полимер. При охлаждении политетрафторэтилен снова переходит в кристаллическое состояние; при этом происходит его усадка и повышение плотности. Наибольшая скорость кристаллизации наблюдается при 310 °С .
При температуре эксплуатации степень кристалличности фторопласта-4 составляет 50-70% , теплостойкость по Вика – 100-110 °С. Рабочая температура - от 269 до 260 °С .
При нагревании выше 415 °С политетрафторэтилен медленно разлагается без плавления с образованием тетрафторэтилена и других газообразных продуктов.
Политетрафторэтилен , обладает очень хорошими диэлектрическими свойствами, которые не изменяются в пределах от -60 до 200 °С , имеет хорошие механические и антифрикционные свойства и очень низкий коэффициент трения.
Ниже приведены основные показатели физико-механических и электрических свойств фторопласта-4:
Разрушающее напряжение, МПа при растяжении | |
незакаленного образца | 13,7-24,5 |
закаленного образца | 15,7-30,9 |
при статическом изгибе | 10,8-13,7 |
Модуль упругости при изгибе, МПа | |
при - 60 °С | 1290-2720 |
при 20°С | 461-834 |
Ударная вязкость , кДж/м 2 | 98,1 |
Относительное удлинение при разрыве , % | 250-500 |
Остаточное удлинение , % | 250-350 |
Твердость по Бринеллю , МПа | 29,4-39,2 |
Удельное объемное электрическое сопротивление , Ом·м | 1015-1018 |
Тангенс угла диэлектрических потерь при 10 6 Гц | 0,0002-0,00025 |
Диэлектрическая проницаемость при 10 6 Гц | 1,9-2,2 |
Химическая стойкость политетрафторэтилена превосходит стойкость всех других синтетических полимеров специальных сплавов, благородных металлов, антикоррозионной керамики и других материалов.
Политетрафторэтилен не растворяется и не набухает ни в одном из известных органических растворителей и пластификаторов (он набухает лишь во фторированном керосине).
Вода не действует на полимер ни при каких температурах. В условиях относительной влажности воздуха, равной 65%, политетрафторэтилен почти не поглощает воду.
До температуры термического разложения политетрафторэтилен не переходит в вязкотекучее состояние, поэтому его перерабатывают в изделия методами таблетирования и спекания заготовок (при 360-380 °С).
Благодаря сочетанию многих цепных химических и физико-механических свойств политетрафторэтилен нашел широкое применение в технике.
Производство политетрафторэтилена
Политетрафторэтилен получают в виде рыхлого волокнистого порошка или белой, либо желтоватой непрозрачной водной суспензии, из которой при необходимости осаждают тонкодисперсный порошок полимера с частицами размером 0,1-0,3 мкм .
Волокнистый политетрафторэтилен
Полимеризацию тетрафторэтилена обычно осуществляют в водной среде, без применения эмульгаторов. Процесс проводят в автоклаве из нержавеющей стали, рассчитанном на давление не менее 9,81 МПа , снабженном якорной мешалкой, системой обогрева и охлаждения.
Автоклав предварительно продувают азотом, не содержащим кислорода, затем в него загружают воду и инициатор.
Ниже приведена норма загрузки компонентов (в массовых частях):
- Тетрафторэтилен – 30
- Вода дистиллированная – 100
- Персульфат аммония – 0,2
- Бура -0,5
По окончании полимеризации автоклав охлаждают, не вступивший в реакцию мономер сдувают азотом и содержимое автоклава направляют на центрифугу. После отделения полимера от жидкой фазы его измельчают, многократно промывают горячей водой и сушат при 120-150 °С.
Технологическая схема процесса получения политетрафторэтилена приведена на рисунке 1.
Тетрафторэтилен из мерника-испарителя 1 поступает в реактор-полимеризатор 3 , предварительно обескислороженный и заполненный до необходимого объема дистиллированной деаэрированной водой из мерника 2 . Перед подачей мономера в реакторе растворяют инициатор - персульфат аммония . Реактор охлаждают рассолом до температуры - 2-4°С и при давлении 1,47- 1,96 МПа начинают полимеризацию. Если после загрузки мономера полимеризация не начинается, то в реактор постепенно малыми порциями вводят активатор процесса - 1 % -ную соляную кислоту . Введение активатора прекращают после начала повышения температуры в реакторе.
Полимеризацию заканчивают по достижении температуры реакционной смеси 60-70 °С и при уменьшении давления в реакторе до атмосферного. Затем реакционная масса самотеком поступает в приемник суспензии 5 , где удаляется маточник, а суспензия политетрафторэтилена с частью маточника, при перемешивании насосом передается в приемник пульпы 6 . Далее включается в работу система репульпатор 7 - коллоидная мельница 8 , в которой производится непрерывная многократная отмывка и размол частиц полимера в суспензии. Соотношение твердой и жидкой фазы в репульпаторе составляет 1: 5 . Влажный продукт поступает в пневматическую сушилку 9 (температура сушки полимера 120 °С). Сухой политетрафторэтилен рассеивают на фракции с разной степенью дисперсности и передают на упаковку.
Дисперсный политетрафторэтилен получают полимеризацией тетрафторэтилена в водной среде в присутствии эмульгаторов - солей перфторкарбоновых или моногидроперфторкарбоновых кислот. В качестве инициатора применяют пероксид янтарной кислоты . Процесс проводят в автоклаве с мешалкой при 55- 70 °С и давлении 0,34-2,45 МПа . В результате полимеризации образуется полимер с частицами шарообразной формы. Полученную водную дисперсию концентрируют или выделяют из нее полимер в виде порошка. При получении водной суспензии, содержащей 50-60% полимера, в нее вводят 9-12% для предотвращения коагуляции частичек полимера.
Дисперсный политетрафторэтилен ( фторопласт-4Д , или фторлон-4Д) выпускается в виде тонкодисперсного порошка (от 0,1 до 1 мкм), водной суспензии, содержащей 50-60% полимера, и суспензии, содержащей 58-65% полимера (для изготовления волокна).
Список литературы:
Коршак В. Б. Прогресс полимерной химии. М., Наука, 1965, 414 с.
Николаев А. Ф. Синтетические полимеры и пластические массы на их основе. Изд. 2-е. М. - Л., Химия, 1966. 768 с.
Николаев А. Ф. Технология пластических масс. Л., Химия, 1977. 367 с.
Кузнецов Е. В., Прохорова И. П., Файзулина Д. А. Альбом технологических схем производства полимеров и пластмасс на их основе. Изд. 2-е. М., Химия, 1976. 108 с.
Получение и свойства поливинилх лор ид а/Под ред. Е. Н. Зильбермана. М., Химия, 1968. 432 с.
Лосев И. Я., Тростянская Е. Б. Химия синтетических полимеров. Изд. 3-е. М., Химия, 1971. 615 с.
Минскер К. С., Колесов С. В., Заиков Г. Е. Старение и стабилизация полимеров на основе винилхлорида. М., Химия, 1982. 272 с.
Хрулев М. В. Поливинилхлорид. М., Химия, 1964. 263 с.
Минскер /С. С, Федосеева Г. 7. Деструкция и стабилизация поливинилхлорида. М., Химия, 1979. 271 с.
Штаркман Б. Я. Пластификация поливинилхлорида. М., Химия, 1975. 248 с.
Фторполимеры/Пер. с англ. Под ред. И. Л.Кнунянца и Б. А. Пономаренко. М., Мир, 1975. 448 с.
Чегодаев Д. Д.., Наумова 3. К, Дунаевская Ц. С. Фторопласты. М.-Л.,Госхимиздат, 1960. 190 с.
Благодаря прочному фторо - углеродному соединению и надежной защите атомов углерода атомами фтора, тефлон обладает почти универсальной химической устойчивостью.
Из вышесказанного ясно, что при использовании тефлона отпадает необходимость в многочисленных таблицах совместимости материалов.
Устойчивость к свету и погодным условиям
Отличается необыкновенной устойчивостью к свету и погодным условиям. Поэтому он без ограничений подходит для наружного применения при самых неблагоприятных погодных условиях, при этом все механические и электрические свойства остаются без изменений.
Гигроскопичность
Гигроскопичность тефлона практически равна нулю. Даже после длительного хранения в воде водопоглащения обнаружено не было (согласно DIN 53472/8.2).
Физиологические свойства тефлона
Тефлон без наполнителей является физиологически нейтральным материалом. Несколько опытов по имплантации материала в живые ткани не показали какой-либо несовместимости. Имеются допуски организаций FDA (Комитет пищевой и лекарственной промышленности США) и BGA (Федеральный Союз оптовой и внешней торговли Германии), согласно которым материал может применяться в медицине и пищевой промышленности. В этом отношении незаменимым качеством материала является устойчивость к горячему водному пару, благодаря чему могут подвергаться стерилизации при их применении в медицинских целях, а также в фармацевтической и пищевой промышленности.
Антифрикционные свойства тефлона
Очень слабые межмолекулярные силы являются причиной того, что имеет самый низкий коэффициент трения среди всех твердых материалов. При чем величины статического и динамического коэффициентов трения почти одинаковы. Движения рывками при этом не наблюдается. Антифрикционная способность сохраняется также при температуре ниже 0 °C При температуре выше 20 °C коэффициент трения незначительно возрастает. При добавлении к тефлону различных наполнителей может наблюдаться несущественное изменение коэффициента трения.
Физические свойства тефлона в сравнении с другими фтортермопластами
материал
|
PTFE | FEP | PFA | PCTFE | PVDF | |||
свойства | Метод испытания | Ед. | ||||||
Плотность | 23 °C | DIN 53479 | g/cm 3 | 2,15-2,19 | 2,12-2,17 | 2,12-2,17 | 2,10-2,20 | 1,76-1,78 |
Прочность в момент разрыва | 23 °C | DIN 53455 | N/mm 2 | 22-40 | 18-25 | 27-29 | 30-38 | 38-50 |
Удлинение при разрыве | 23 °C | DIN 53455 | % | 250-500 | 250-350 | 300 | 80-200 | 30-40 |
Твердость при вдавливании шарика | 23 °C | DIN 53456 | N/mm 2 | 23-32 | 23-28 | 25-30 | 30 | 65 |
Предел вдавливания | 23 °C | DIN 53455 | N/mm 2 | 10 | 12 | 14 | 40 | 46 |
Модуль упругости при движении | 23 °C | DIN 53457 | N/mm 2 | 400-800 | 350-700 | 650 | 1000 - 2000 | 800 - 1800 |
Модуль упругости при изгибе | 23 °C | DIN 53457 | N/mm 2 | 600-800 | 660-680 | 650-700 | 1200 - 1500 | 1200 - 1400 |
Предельное напряжение изгиба | 23 °C | DIN 53452 | N/mm 2 | 18-20 | 15 | 52-63 | 55 | |
Твердость по Шору D | 23 °C | DIN 53505 | 55-72 | 55-60 | 60-65 | 70-80 | 73-85 | |
Температура плавления | . | ASTM 2116 | °C | 327 | 253-282 | 300-310 | 185-210 | 165-178 |
Температура эксплуатации без нагрузки | . | . | °C | 260 | 205 | 260 | 150 | 150 |
Коэффициент теплового расширения 10 -5 | . | DIN 52328 | K -1 | 10-16 | 8-14 | 10-16 | 4-8 | 8-12 |
Теплопроводность | 23 °C | DIN 52612 | W/K · m | 0,25 | 0,2 | 0,22 | 0,19 | 0,17 |
Удельная теплоемкость | 23 °C | KJ/kg · K | 1,01 | 1,17 | 1,09 | 0,92 | 1,38 | |
Содержание кислорода | . | . | % | >95 | >95 | >95 | >95 | >43 |
Гигроскопичность | . | DIN 53495 | % | <0,01 | <0,01 | <0,03 | <0,01 | <0,03 |
Коэффициенты трения тефлон / перлитный чугун при сухом ходе (p = 0,2 N/mm 2 , T = 30°C, R t ß <1,5 µm)
Политетрафторэтилен , (-CF 2 CF 2 -) n - продукт полимеризации тетрафторэтилена, полимер с уникальным сочетанием физических, электрических, антифрикционных, химических и других свойств, которое невозможно найти ни в каком другом материале, а также способностью сохранять эти свойства в широком интервале температур: от - 269 o С до +260 o С.
Политетрафторэтилен
(
ПТФЭ
,
PTFE
) был открыт 6 апреля 1938 года Роем Планкеттом, сотрудником фирмы DuPont. Работая с фреонами, Планкетт обнаружил на стенках баллона, в котором находился газообразный тетрафторэтилен, белый порошок. Дальнейшими исследованиями было установлено, что это вещество является полимером -
политетрафторэтиленом
, образовавшимся в результате самопроизвольной полимеризации тетрафторэтилена.
Первое опытно-промышленное производство PTFE было запущено в США в 1943 году на фирме DuPont (продукт выпускался под торговым названием Teflon ), всего через шесть лет после открытия этого фторполимера , а в Англии его начали производить на фирме ICI по лицензии фирмы DuPont в конце 1947 года.
В Советский Союз
Teflon
(
тефлон
) попал с образцами военной техники, передаваемой по ленд-лизу. Ввиду исключительности свойств этого полимера, позволяющих решать многие проблемы в военной промышленности, в 1947 году Правительство СССР поручило трем научным организациям: НИИ-42, АН СССР и НИИПП разработать синтез мономера и полимера, а также методы переработки в изделия отечественного
ПТФЭ
.
В марте 1949 года в ГИПХ (Государственном институте прикладной химии) были созданы первые опытные установки по синтезу мономера и фторполимера ПТФЭ , на которых проводилась отработка технологического процесса. В это же время НИИПП (в дальнейшем ОНПО "Пластполимер") работало над новым научно-техническим направлением: "Переработкой политетрафторэтилена в различные изделия". В 1956 году на Кирово-Чепецком химическом комбинате (КЧХК) было введено в эксплуатацию первое промышленное производство ПТФЭ в России под торговой маркой фторопласт-4 ( Ф-4 ). С 1961 г. на КЧХК осваивался выпуск других фторсодержащих полимеров и сополимеров. В связи с растущей потребностью во фторполимерах в 1963 году на Уральском химическом заводе были введены дополнительные мощности по выпуску фторопластов Ф-4 и Ф-4Д
С 1950 по 1961 год на основе шести мономеров, разработанных в ГИПХ, в НИИПП было получено свыше 60 различных фторсодержащих продуктов, включая гомополимеры:
фторопласт-1
,
фторопласт-2
,
фторопласт-3
, фторопласт-4 и сополимеры - фторопласт-23, фторопласт-32, фторопласт-30,
фторопласт-40
,
фторопласт-4МБ
.
В 1961 году был осуществлен пуск первого производства (
фторопласт-42
, фторопласт-40).
В 60-е - 80-е годы продолжилась разработка и освоение новых марок ПТФЭ и новых видов термопластичных фторполимеров (ТПФП) и фторэластомеров (ФЭ).
Свойства и применение фторопласта-4
Фторопласт-4 - высокомолекулярный кристаллический полимер с температурой плавления около 327°С, выше которой исчезает кристаллическая структура и он превращается в аморфный прозрачный материал, не переходящий из высокоэластического в вязкотекучее состояние даже при температуре разложения (свыше 415°С). Вязкость расплава политетрафторэтилена при 380°С составляет 10 10 -10 11 Па*с, что исключает переработку этого полимера обычными для термопластов методами . В связи с этим фторопласт-4 перерабатывается в изделия методом предварительного формования заготовки на холоду и последующего ее спекания.
Зарубежные аналоги фторопласта-4: ALGOFLON ® PTFE F (Solvay Plastics), Teflon ® 7 (DuPont), HOSTAFLON ® TF 1702 (3M/Dyneon), POLYFLON ® M 12, 14 (Daikin Industries Inc.), Fluon ® PTFE G 163, 190 (Asahi Glass Co.,Ltd.)
Фторопласт-4 обладает:
- исключительно высокими диэлектрическими показателями, обусловленными неполярностью полимера;
- низкими значениями тангенса угла диэлектрических потерь и диэлектрической проницаемости, почти не зависящими от частоты и температуры;
- исключительно высокой стойкостью к вольтовой дуге;
- электрической прочностью (при измерении на тонких пленках толщиной 5-20 мкм электрическая прочность достигает 300 МВ/м и более);
- чрезвычайно высокой химической стойкостью, которая объясняется высоким экранирующим эффектом электроотрицательных атомов фтора;
- стойкостью ко всем минеральным и органическим кислотам, щелочам, органическим растворителям, газам и другим агрессивным средам. Разрушение полимера наблюдается лишь при действии расплавленных щелочных металлов, их растворов в аммиаке, элементарного фтора и трехфтористого хлора при повышенных температурах;
- способностью не смачиваться водой и не подвергаться воздействию воды при длительных испытаниях;
- абсолютной стойкостью в тропических условиях, грибостостойкостью;
- высокими антифрикционными свойствами, исключительно низким коэффициентом трения (в определенных условиях и парах коэффициент трения до 0,02). Это объясняется не большой величиной межмолекулярных сил, обусловливающих незначительное притяжение других веществ). Коэффициент трения снижается с увеличением нагрузки и необратимо увеличивается в 2-3 раза при 327°С и при 16-18°С после воздействия высокой скорости.
Фторопласт-4 с его низкими прочностью и теплопроводностью редко используется в чистом виде в антифрикционных изделиях, работающих под нагрузкой (например, подшипниках); для этого создаются наполненные композиции, содержащие графитированный уголь, кокс, стекловолокно, дисульфид молибдена, или так называемые металлофторопластовые композиции, обладающие повышенной твердостью, стойкостью к износу, теплопроводностью. Альтернативой ПТФЭ, в ряде случаев, могут стать более твердые и прочные фторопласты Ф-2 , Ф-2М , Ф-3 или Ф-40 .
Недостатком ПТФЭ является ползучесть , увеличивающаяся с повышением температуры. Уже при удельных нагрузках 2,95-4,9 МПа появляется заметная остаточная деформация, а при давлениях 19,6-24,5 МПа и температуре 20°С материал начинает течь. Явление деформации политетрафторэтилена под нагрузкой на холоду позволяет применять его при одностороннем давлении не выше 0,295 МПа.
Оптические свойства ПТФЭ невысоки . Он прозрачен для видимого света только при толщине, измеряемой десятками микрометров. Для ультрафиолетовых лучей прозрачен в пределах длин волн 200-400 мкм, для инфракрасных лучей -2-75 мкм. Многие виды термопластичных фторполимеров обладают отличными оптическими характеристиками .
Фторопласт-4 малоустойчив к облучению. Его механические свойства быстро ухудшаются при действии λ - и β - излучения. Уже при дозе 5*10 4 Гр деструкция полимера настолько глубока, что он становится хрупким и ломается при изгибе. Из-за недостаточной радиационной стойкости изделия из ПТФЭ не могут длительно эксплуатироваться в условиях высокого уровня проникающей радиации. Заменой в применении Ф-4 при радиационном воздействии могут стать водород содержащие фторопласты Ф-40 или ПВДФ .
Изделия из фторопласта-4 могут практически применяться в очень широком интервале температур: от -269 °С до +260 °С. Однако при изменении температуры резко изменяются механические свойства полимера (см. таблицу свойств). Поскольку закалка постепенно снимается при повышенных температурах, закаленные изделия применяются редко и в основном при низких температурах.
Благодаря высокой тепло-, морозо- и химической стойкости, антифрикционным, антиадгезионным и исключительным диэлектрическим свойствам фторопласт-4 широко применяется:
- как антикоррозионный материал в химической промышленности для изготовления аппаратов, элементов ректификационных колонн, теплообменников, насосов, труб, клапанов, облицовочной плитки, сальниковых набивок и др. Использование ПТФЭ в химических аппаратах в качестве труб, уплотнений, прокладок способствует получению продуктов высокой чистоты;
- как диэлектрик в электротехнике, электронике . Особенно успешно используется в технике высоких и ультравысоких частот. Например, ориентированная пленка применяется для изготовления высокочастотных кабелей, проводов, конденсаторов, изоляции катушек; для пазовой изоляции электрических машин,каркасов, изоляторов;
- в машиностроении в чистом и наполненном виде для изготовления деталей машин и аппаратов, подшипников, работающих без смазки в коррозионных средах, в виде уплотнений компрессоров и т.д.;
- в производстве клейких и красящих веществ для покрытий утюгов, лыж и пр.;
- в пищевой промышленности (облицовка валов для раскатки теста, покрытия форм для выпечки и т.д.);
- в медицине (протезы и трансплантаты из ткани и войлока на основе фторопластового волокна, ткани и протезы кровеносных сосудов из нити фторопласта-4, имлантаты и шовные материалы , емкости для приема коронарной крови, держатели для протезов минеральных клапанов и т.д.)
Фторопласт-4А и -4АТ -марки фторопласт-4, обладающие сыпучими свойствами. Применение сыпучих марок при изготовлении фасонных изделий методом изостатического прессования позволяет значительно упростить трудоемкий процесс заполнения пресс-формы и в 1,5-2 раза снизить толщину стенки готовых изделий.
Фторопласт-4Д - представляет собой тонкодисперсную модификацию политетрафторэтилена с меньшим молекулярным весом, чем фторопласт-4, по своим физико-механическим и электрическим характеристикам близок к фторопласту-4, по химической стойкости фторопласт-4Д превосходит все известные материалы, в том числе золото и платину; стоек ко всем минеральным и органическим кислотам, щелочам, органическим растворителям, окислителям; не смачивается водой и не набухает, диэлектрические свойства почти не зависят от температуры, частоты и влажности. Фторопласт-4Д перерабатывается методом экструзии, получившим название "экструзия пасты", в профильные изделия (тонкостенные трубы, изоляция, тонкие пленочные покрытия) неограниченной длины, которые трудно или невозможно получить из обычного фторопласта-4. На основе фторопласта-4Д можно готовить суспензии, применяемые для изготовления антипригарных тефлоновых покрытий методом распыления или роликовой накатки, а также для антикоррозионной, антифрикционной и антиадгезионной защиты металлов.
Изделия из фторопласта-4Д : лента ФУМ - предназначена для уплотнений резьбовых соединений при температуре от -60°С до 150°С и давлении 65 атм., трубки электроизоляционные - для изоляции токопроводящих частей электротехнических изделий при работе в агрессивных средах, методом рам-экструзии (плунжерной экструзии) изготавливаются трубы, стержни и др.
Свойства фторопласта-4
Наименование показателя | Фторопласт-4 | Фторопласт-4Д |
---|---|---|
Физические свойства | ||
Плотность, кг/м 3 | 2120-2200 | 2190-2200 |
Температура плавления кристаллитов,°С | 327 | 326-328 |
Температура стеклования,°С | -120 | от -119 до - 121 |
Теплостойкость по Вика, °С | 110 | - |
Удельная теплоемкость, кДж/(кг*К) | 1,04 | 1,04 |
Коэффициент теплопроводности, Вт/(м*К) | 0,25 | 0,29 |
Температурный коэффициент линейного расширения*10 -5 ,°С -1 | 8 - 25 | 8 - 25 |
Рабочая температура, °С
минимальная максимальная |
-269 260 |
-269 260 |
Температура разложения, °С | более 415 | более 415 |
Термостабильность, % | 0,2 (420 °С, 3 ч) | - |
Горючесть по кислородному индексу, % | 95 | 95 |
Стойкость к облучению, Гр | (0,5-2)*10 4 | (0,5-2)*10 4 |
Механические свойства | ||
Разрушающее напряжение при растяжении, МПа |
14,7-34,5
15,7-30,9 (закаленные образцы) |
12,7-31,8 |
Удлинение при разрыве, %
относительное остаточное |
250-500
250-350 |
100-590
250-350 |
Модуль упругости, МПа
при растяжении при сжатии
при статическом изгибе
|
410
686,5
460,9-833,6
|
410
686,5
441-833,6
|
Разрушающее напряжение, МПа
при сжатии при статическом изгибе |
11,8 10,7-13,7 |
11,8 10,7-13,7 |
Ударная вязкость, кДж/м 2 | 125 | 125 |
Твердость по Бринеллю, МПа | 29,4-39,2 | 29,4-39,2 |
Коэффициент трения по стали | 0,04 | 0,04 |
Способность к механической обработке | Превосходная | Превосходная |
Электрические свойства | ||
Удельное объемное электрическое сопротивление, Ом*м | 10 15 -10 18 | 10 14 -10 18 |
Удельное поверхностное электрическое сопротивление, Ом | Более 1*10 17 | Более 1*10 17 |
Тангенс угла диэлектрических потерь
при 1 кГц при 1 МГц |
(2-2,5)*10 -4 (2-2,5)*10 -4 |
(2-3)*10 -4 (2-3)*10 -4 |
Диэлектрическая проницаемость
при 1 кГц при 1 МГц |
1,9-2,1 1,9-2,1 |
1,9-2,2 1,9-2,2 |
Электрическая прочность
(толщина образца 4 мм), МВ/м |
25-27 | 25-27 |
Дугостойкость, с | 250-700 (сплошной токопроводящий слой не образуется) |