Что такое водохранилище? Самые большие водохранилища России. Интересные и нужные сведения о строительных материалах и технологиях

1. НПУ - наивысший уровень воды в водохранилище, который может поддерживаться в течение длительного времени в условиях нормальной эксплуатации. 2. УМО – низший уровень, до которого может срабатываться водохранилище при нормальном условии эксплуатации. 3. hср – глубина сработки водохранилища – толщина слоя воды между НПУ и УМО. hср≤Hmax 4. Hmax - максимальный напор, разница между НПУ и отметки уровня нижнего бьефа при прохождении гарантированного расхода. 5. Hmin - минимальный напор, разница между УМО и УНБ.

6. ФПУ – наивысший уровень, до которого кратковременно может наполнятся водохранилище. 7. hфор - толщина слоя между ФПУ и НПУ 8. Vплз – объем, заключенный между НПУ и УМО, который используется для регулирования стока. 9. VУМО – объем, заключенный ниже УМО, не срабатывается. 10. Vполн – объем водной массы, соответствующий НПУ. 11. Vфорс – объем, расположенный между ФПУ и НПУ, используется для срезки максимальных катастрофических половодий и паводков.

Vплз характеризуется относительной величиной β. Величина НПУ определяет максимальную площадь затопления и максимальный напор. Величина УМО определяет минимальный напор и минимальную площадь затопления. НПУ и УМО вместе определяют значения Qгар. Значения НПУ и УМО в ход водохозяйственных расчетов определяются вариантно: a) Назначается несколько значений НПУ. b) Для каждого значения НПУ рассчитывается оптимальный УМО. c) Из всех опытов расчета выбирается наиболее целесообразный по водо- и энергоотдаче и затратам на строительство и эксплуатацию.

УМО задается исходя из: Емкости, необходимой для аккумуляции наносов, которые будут поступать в водохранилище после его постройки; Максимальной водо- или энергоотдачи; Минимального напора, необходимого для работы гидроагрегатов; Обеспечения качества воды; Обеспечение биоценоза; Обеспечения минимальных глубин для судоходства.

Водохранилища, их классификация и характеристики

Общие сведения о регулировании стока. Виды и типы

Регулирования

Сток воды в реках в естественном состоянии является чрезвычайно изменчивым в зависимости от многих факторов, в первую очередь – от характера питания. На некоторых реках с преимущественно снеговым питанием максимальный расход воды в десятки и сотни раз больше минимального расхода. Во время паводка наблюдается большое увеличение расхода воды, повышение уровня и значительное увеличение глубин, которые полностью не используются для судоходства. В период небольших расходов и низкого стояния уровней глубины резко уменьшаются, особенно на перекатах, что ограничивает пропускную способность рек при осуществлении перевозок грузов и пассажиров.

Регулирование стока рек призвано изменить во времени естественный режим речного стока, уменьшить колебания стока воды, сделать водные пути более глубоководными на протяжении всего навигационного периода и существенно улучшить использование водных ресурсов для различных отраслей хозяйства: энергетики, судоходства, лесосплава, водоснабжения и сельского хозяйства. Кроме того, при регулировании стока решается задача предотвращения наводнений, защиты сельскохозяйственных угодий и строений.

Для регулирования стока на реке возводится узел гидротехнических сооружений (гидроузел), в состав которого (кроме прочих сооружений) входят одна или несколько плотин. Выше гидроузла уровни воды повышаются, образуется водохранилище, которое позволяет аккумулировать «излишки» воды во время прохождения больших расходов (в период снеговых и дождевых паводков). В меженный период на участок реки ниже гидроузла подается дополнительный расход воды по сравнению с его естественными значениями (производятся попуски воды из водохранилища), уровни воды и глубины при этом повышаются. Таким образом, происходит выравнивание неравномерности распределения расхода воды по времени.

Для каждого водохранилища путем выполнения водохозяйственных расчетов устанавливаются следующие характерные уровни воды, имеющие постоянные высотные отметки:

ФПУ – форсированный подпорный уровень;

НПУ – нормальный подпорный уровень;

УНС – уровень навигационной сработки;

УМО – уровень мертвого объема.

Форсированный подпорный уровень (ФПУ) – это уровень воды выше нормального, временно допускаемый в водохранилище при чрезвычайных условиях эксплуатации гидротехнических сооружений (например, во время прохождения особо высокого паводка).

Нормальный подпорный уровень (НПУ) – это наивысший проектный уровень воды, который поддерживается в водохранилище при нормальных условиях эксплуатации гидротехнических сооружений (до этого уровня водохранилище может наполняться во время обычного паводка).

Уровень навигационной сработки (УНС) – это наинизший уровень воды, допускаемый в водохранилище в период навигации, при этом учитывается необходимость поддержания судоходных глубин.

Уровень мертвого объема (УМО) – это наинизший уровень воды, до которого допускается опорожнение (сработка) водохранилища.

Разница объемов водохранилища при НПУ и УНС называется полезным объемом.

Объем водохранилища при УМО называется мертвым объемом. Величину мертвого объема водохранилища выбирают так, чтобы имелся минимальный напор воды, обеспечивающий нормальную работу турбин гидроэлектростанции. На реках, несущих большое количество наносов, при выборе величины мертвого объема учитывается время заполнения его наносами в процессе эксплуатации. Кроме того, при выборе УМО учитывается необходимость обеспечения надежной работы водоприемников, обеспечивающих подачу воды предприятиям, населенным пунктам и на сельскохозяйственные угодья.

Требования, предъявляемые к регулированию стока потребителями, являются различными и иногда противоречивыми. Например, для целей водного транспорта наибольшие расходы воды требуются летом, когда наблюдается минимальный естественный сток воды в реках, чтобы существенно увеличить глубины для обеспечения безопасного движения судов большой грузоподъемности. Для энергетики наибольшие расходы воды нужны в осенне-зимний период, когда существенно увеличивается потребность в выработке электрической энергии для промышленных пунктов. Кроме того, интересы энергетики требуют неравномерного расходования воды в течение суток и по дням недели из-за неравномерного потребления энергии, а для водного транспорта желательно иметь постоянные расходы воды и глубины, чтобы не было затруднений для движения судов.

Сельское хозяйство нуждается в резком увеличении расходов воды, в основном, в течение короткого вегетационного периода для орошения полей и полива растений.

Поэтому при проектировании мероприятия по регулированию речного стока необходимо учитывать интересы всех отраслей хозяйства, чтобы получить наибольший экономический эффект от использования водных ресурсов.

В зависимости от продолжительности периода перераспределения стока и от режима работы водохранилища различают следующие виды регулирования речного стока: многолетнее, годичное (сезонное), недельное и суточное.

Многолетнее регулирование предусматривает выравнивание стока на протяжении нескольких лет. При этом в многоводные годы происходит наполнение водохранилищ, а в маловодные годы, в основном, созданные запасы воды расходуются. Таким образом, многолетнее регулирование выравнивает не только внутригодовые, но и многолетние колебания стока. Такой вид регулирования стока способствует стабильности и увеличению габаритов водного пути с большой обеспеченностью.

Для осуществления многолетнего регулирования стока создаются крупные водохранилища, позволяющие аккумулировать большие объемы воды. К таким водохранилищам относятся: Верхне-Свирское на р. Свирь, Рыбинское на р. Волга, Цимлянское на р. Дон, Братское на р. Ангара, Красноярское на р. Енисей и др.

Наиболее простым является годичное регулирование, при котором обеспечивается выравнивание стока только в пределах года. При этом водохранилище наполняется в период паводка, а в течение остального длительного периода, когда естественный сток воды резко уменьшается, происходит расходование воды из водохранилища. Полное опорожнение полезного объема воды водохранилища производится к началу следующего паводка. Для обеспечения такого регулирования стока требуется создание меньших по объему водохранилищ, чем при многолетнем регулировании. Годичное регулирование стока также улучшает условия судоходства, но с меньшей обеспеченностью габаритов водного пути. Разновидностью годичного регулирования является сезонное регулирование стока, при котором сработка водохранилища для повышения уровней воды и увеличения глубин ниже гидроузла производится только во время наиболее затруднительного для судоходства меженного периода.



Необходимость суточного и недельного регулирования стока объясняется неравномерностью потребления электрической энергии промышленными предприятиями и населенными пунктами. Суточное регулирование обуславливается неравномерностью потребления энергии в течение суток. Обычно наибольшее потребление энергии, вырабатываемой гидроэлектростанциями, происходит в дневные часы, когда работают промышленные предприятия и особенно в вечерние часы, когда работают предприятия и включается осветительная сеть населенных пунктов. Наименьшее потребление – ночью, так как в это время большинство предприятий не работает и отключается освещение. Поэтому для обеспечения такой неравномерности потребления электрической энергии работает соответствующее количество турбин гидроэлектростанции, и, следовательно, происходит неравномерное расходование воды из водохранилища.

Недельное регулирование стока обусловливается неравномерностью потребления электрической энергии в течение недели. В субботу и в воскресенье, когда многие предприятия не работают, потребление энергии существенно меньше, чем в рабочие дни недели.

При суточном и недельном регулировании стока в результате частых изменений расходов происходят колебания уровней воды на участке реки ниже водохранилища, которые прослеживаются на протяжении нескольких десятков километров. Таким образом, суточное и недельное регулирование стока являются характерной особенностью энергетического использования стока, и отличается от остальных видов регулирования. В этом случае происходит не выравнивание стока, а наоборот, повышение неравномерности его распределения во времени.

Такое регулирование стока создает затруднения для судоходства, так как при снижении уровней уменьшаются глубины, усложняется устройство и оборудование причалов и иногда нарушается график движения судов.

Для обеспечения суточного и недельного регулирования стока не требуется увеличение емкости водохранилища многолетнего или годичного регулирования.

По методу расходования (отдачи) воды из водохранилища различают два типа регулирования: с постоянной и переменной отдачей воды . На рис. 9.1 показаны несколько случаев запроектированного графика отдачи годичного регулирования: равномерный на протяжении всего года (рис. 9.1, а); равномерный с двумя ступенями в течение навигационного и зимнего периода (рис. 9.1, б); ступенчатый с максимумом расхода отдачи в летний (меженный) период (рис. 9.1, в).

Последний случай ступенчатого графика отдачи является типичным для компенсирующего транспортно-энергетического регулирования. При этом в межень, когда имеются минимальные бытовые расходы воды, отдача из водохранилища наибольшая. В зимний период из водохранилища подается лишь гарантированный расход турбины гидроэлектростанции, которая вырабатывает электрическую энергию . В период паводка зарегулированная отдача увеличивается только для покрытия потерь воды на испарение.

Во всех случаях площадь бытового гидрографа w 1 , расположенная выше графика отдачи, представляет собой объем водохранилища V B , а площадь w 2 , расположенная ниже графика отдачи, но выше бытового гидрографа – объем отдачи для обеспечения зарегулированных расходов воды Q З . Для того, чтобы такая отдача была возможна, необходимо соблюдение неравенства w 1 ³ w 2 , т.е. чтобы дефицит стока в летне-зимний период не превосходил избытка стока за период весеннего паводка.

Водохранилища, их классификация и характеристики

По гидрографическому признаку различают три типа водохранилищ: русловые , озерные и смешанные .

Водохранилище, которое образуется в результате преграждения течения реки плотиной и затопления речной долины, называется русловым (рис. 9.2, а). Такие водохранилища обычно имеют большую длину и площадь водного зеркала. Для создания в них больших запасов воды необходимо значительное повышение уровня воды.

Озерное водохранилище образуется в результате преграждения плотиной истока реки, вытекающей из озера (рис. 9.2, б). Вода при этом заполняет озерную чашу. В таких водохранилищах с большой площадью водного зеркала могут создаваться значительные запасы воды при сравнительно небольших повышениях уровня озера.

При возведении плотины несколько ниже истока реки, вытекающей из озера, образуется смешанное водохранилище, которое включает емкости чаши озера и прилегающей к нему долины реки (рис. 9.2, в).

Основными характеристиками любого водохранилища являются его емкость V и площадь водного зеркала F . При этом площадь водного зеркала водохранилища определяют планиметрированием горизонталей по топографическим картам на соответствующей отметке берегового откоса. Объем водохранилища вычисляется путем последовательного суммирования произведений средних площадей водного зеркала F i на приращение высоты уровня воды DZ

Характеристики водохранилища приводятся либо в табличной форме при четырех характерных уровнях воды (ФПУ – форсированный подпорный уровень, НПУ – нормальный подпорный уровень, УНС – уровень навигационной сработки и УМО – уровень мертвого объема), либо в виде кривых зависимости емкости V и площади водного зеркала F от изменения уровня воды в водохранилище (рис. 9.3). На кривые V и F =¦(Z) наносятся расчетные отметки ФПУ, НПУ, УНС и УМО.

Для нижнего бьефа водохранилища основной характеристикой является кривая связи между уровнями и расходами воды. Она строится по данным гидрометрических измерений за многолетний период, предшествующий возведению плотины, а затем корректируется, так как происходит размыв дна реки на участке ниже створа плотины.

При эксплуатации водохранилища, кроме полезного объема, используемого для народнохозяйственных целей, имеются бесполезные потери воды на испарение с водной поверхности водохранилища и на фильтрацию в грунт дна и берегов.

Потери на испарение возникают в результате затопления большой площади долины реки. Величина этих потерь P н определяется разницей между количеством воды, поступающей в атмосферу с водной поверхности водохранилища Z в и объемом воды, который раньше (до затопления) поступал в атмосферу с площади суши, занятой водохранилищем Z с

где: X – количество осадков, выпадающих на занимаемую водохранилищем площадь;

Y – сток воды с указанной площади.

Для определения Z в пользуются картой изолиний среднего многолетнего слоя испарения с водной поверхности, составленной по данным многолетних наблюдений на территории расположения водохранилища.

Непосредственный подсчет величины Z с затруднителен из-за большого разнообразия природной среды (района постройки водохранилища, рельефа местности, растительности и др.). Поэтому эта величина определяется косвенно, как разница между осадками и стоком воды.

Потери воды на испарение в Северо-Западной зоне обычно составляют 1-2 мм в год. В южных районах с засушливым климатом они существенно больше до 0,5-1,0 м и более в год, что учитывается при определении полезного объема водохранилища.

Потери воды из водохранилища на фильтрацию происходят через поры породы, слагающей чашу водохранилища, в соседние бассейны, а также через тело и различные устройства самой плотины в нижний бьеф реки. При этом последний вид потерь на фильтрацию является сравнительно малой величиной и обычно в водохозяйственных расчетах не учитывается.

Потери воды на фильтрацию через дно и берега водохранилища зависят от напора воды, создаваемого плотиной и гидрогеологических условий (пород, слагающих долину реки, их водопроницаемости, характера залегания, положения уровня и режима грунтовых вод).

Фильтрационные потери будут минимальными в том случае, когда ложе водохранилища сложено из практически водонепроницаемых пород (глина, плотные осадочные или массивные кристаллические породы без трещин), а уровень грунтовых вод на примыкающих к водохранилищу склонах расположен выше отметки нормального подпорного
уровня (рис. 9.4, а).

Большие фильтрационные потери наблюдаются у водохранилищ, дно и берега которых сложены трещиноватыми песчаниками, известняками, сланцами или другими водопроницаемыми грунтами, а уровень грунтовых вод на склонах расположен ниже отметки НПУ (рис. 9.4, б).

Наиболее значительная фильтрация из водохранилищ наблюдается в первые годы их эксплуатации. Это объясняется тем, что в период заполнения водохранилища происходит насыщение водой грунта, слагающего ложе, и пополнение запасов подземных вод . С течением времени фильтрация уменьшается и через 4-5 лет стабилизируется. Фильтрация воды из водохранилища через поры породы изучена слабо из-за большого количества определяющих факторов и сложности проведения гидрогеологических исследований. Поэтому часто для оценки таких потерь опираются на опыт эксплуатации уже действующих водохранилищ.

По приближенным нормативам при средних гидрогеологических условиях слой потерь воды из водохранилища на фильтрацию может составить от 0,5 м до 1,0 м в год.

Водохранилища представляют собой искусственные объекты, они созданы при возведении водонапорных конструкций (плотин), устанавливаемых в долинах крупных рек , чтобы накопить и сохранить большие объемы воды, они решают ряд таких проблемы как:

  • Развитие гидроэнергетики;
  • Водоснабжение;
  • Развитие судоходства;
  • Хозяйственное орошение;
  • Борьба с наводнениями;
  • Благоустройство территории.

Бывают озерного и речного типа . На территории России построено много водохранилищ (из них 41 - крупнейшие, 64 - крупные, 210 - средние и 19о7 - малые), большинство во второй половине ХХ века, некоторые из них входят в число самых больших водохранилищ мира.

Крупные водохранилища России

Самыми крупными по площади водохранилищами в России являются Куйбышевское (Самарское), Братское, Рыбинское, Волгоградское, Красноярское (входят в первую десятку мира), Цимлянское, Зейское, Вилюйское, Чебоксарское, Камское.

Куйбышевское (Самарское водохранилище), его площадь 6,5 тыс. км 2 , - это самое большое водохранилище, построенное на реке Волге в 1955-1957 годах и третье по площади водохранилище в мире. Нижнюю часть еще называют Жигулевским морем, по названию построенной вблизи Жигулевской ГЭС на Жигулевских горах вблизи города Тольятти. Название водохранилищу дал город Самара (Куйбышев с 19135 по 1991 год), расположенный вниз по течению. Основным предназначением водохранилища является производство электроэнергии, улучшение качества судоходства, водоснабжение, орошение, рыболовство...

Братское водохранилище (площадь 5,47 тыс. км 2) расположенное в Иркутской области на реке Ангаре является вторым по объему хранящейся воды водохранилищем в мире (169 м 3). Оно было построено в1961 -1967 гг. (в 1961 была поставлена плотина, до 1967 года велось наполнение водохранилища водой) в результате строительства Братской ГЭС. Названо в честь города Братска административного центра Иркутской области, построенного на его берегах. Водохранилище используют для генерирования электроэнергии, в судоходстве и промысловой добыче рыбы, для сплава древесины, водоснабжении и ирригации...

Рыбинское водохранилище площадью 4,6 тыс. км 2 , входит в состав Рыбинского гидроузла на реке Волге и её притоках Шексна и Молога на северо-западе Ярославской области, частично на территории Вологодской и Тверской областей. Строительство было начато в 1935 году на месте древнего ледникового озера, планировалось, что это будет самое крупное в мире озеро искусственного происхождения. Наполнение чаши длилось до 1947 года, для это было затоплено почти 4 тыс. км 2 окружающих лесов и было переселено население 663 поселков и деревень (133 тыс. человек) вокруг города Мологи. Водохранилище используется для работы Волжского каскада ГЭС, ловли рыбы и судоходства...

Строительство Волгоградского водохранилища длилось с 1958 по 1961 год, оно возникло при возведении плотины Волгоградской ГЭС на реке Волге (территория Саратовской и Волгоградской областей). Его площадь - 3,1 тыс. км 2 , на его берегах построены такие города как Саратов, Энгельс, Маркс, Камышин, Дубовка. Используется для производства электроэнергии, перемещения водных видов транспорта, орошения и водоснабжения...

Цимлянское водохранилище появилось после возведения плотины на реке Дон, город Цимлянск в Ростовской и Волгоградской областях (67 % площади) в 1952 году. Его заполнение длилось по 1953 год, начало строительства - 1948 год. Его площадь - 2,7 тыс. км 2 , имеет вид котловины с тремя расширениями для устьев таких рек как Чир, Аксай Курмоярский и Цимла, также помимо них сюда впадает еще 10 рек. Используется для обеспечения транзитного судоходства по Волго-Донскому каналу, орошение засушливых прилегающих земель, работа Цимлянской ГЭС. Также на берегу водохранилища функционирует Ростовская АЭС, находятся города-порты - Волгодонск, Калач-на-Дону...

Строительство Зейского водохранилища площадью 2,4 тыс. км 2 длилось с 1974 по 1980 год. Оно построено на реке Зея (Амурская область РФ) в результате возведения плотины. По объёмам хранящейся там воды (68,4 км 3) - это третье место после Братского (169 км 3) и Красноярского (73,3 км 3) водохранилищ. Здесь ведется промысловая добыча рыбы, работает Зейская ГЭС, также водохранилище регулирует сток Амура, который подвержен влиянию тихоокеанских муссонов...

Вилюйское водохранилище находится на реке Вилюй (приток Лены), оно появилось в результате возведения плотины Вилюйской ГЭС в 1961-1967 годах. Оно расположено в Якутии на границе с Иркутской областью, его площадь - 2,36 тыс. км 2 , используется с целью регулирования годового стока реки Вилюй, как источник водоснабжения, орошения, для судоходства и рыбного промысла...

Чебоксарское водохранилище на реке Волга (территория Республики Марий Эл, Чувашской Республики и Новгородской области) является частью Волго-Камского каскада ГЭС. Площадь - 2,1 тыс. км 2 , оно появилось в результате возведения плотины Чебоксарской ГЭС, строительство которой велось с 1980 по 1982 год. Используется для производства электроэнергии, рыболовства, теплоходного судоходства...

Камское водохранилище образовано на реке Каме в Пермском крае РФ при строительстве Камской ГЭС, которая вступила в эксплуатацию в 1954 году после возведения плотины. Его площадь - 1,9 тыс. км 2 , на его берегах расположена Пермская ГРЭС. Также на так называемом Камском море каждый год проходит парусная регата «Кубок Камы» - крупнейшее спортивное состязание на территории Пермского края...

Полезный объем Wплз. нетто водохранилища уточняем, имея потерю воды из водохранилища на испарение, фильтрацию и льдообразование. Для этого предварительно определяем полный объем водохранилища Wср в каждом месяце и площадь щср.

Так, полный объем водохранилища

W = Wплз. нетто + Wмо,

где Wмо - мертвый объем водохранилища.

В связи с тем, что данные о мутности воды в задании отсутствуют, мертвый объем вычисляем ориентировочно. Допустим, что

Wмо? 0.1· Wплз. = 0.1·7.484 = 0.7484 млн. м3.

Значения полного объема записываем в графу 2 табл.3.

Затем определяем средние за месяц объемы водохранилища Wср, с которым с помощью топографических характеристик находим площадь зеркала щ.

Потери на испарение вычисляем за каждый месяц по формуле

где hи - слой испарения.

Результаты вычислений заносим в графу 6 табл.3.

Потери на фильтрацию Wф в каждом месяце находим по формуле

Wф = щi·kф·ni,

где kф = 0.003 м/сут,

ni - число дней в месяце.

Результаты заносим в графу 7 табл.3.

Потери на льдообразование

Wл = 0.9·kл· hл·(щн - щк),

где 0.9 - относительный вес льда;

kл - коэффициент постепенного нарастания толщины ледяного покрова, равный примерно 0.65;

hл - среднемноголетняя толщина льда к концу ледостава;

щн и щк - площадь зеркала водохранилища в начале и конце ледостава.

Распределяем объем потерь Wл на зимние месяцы (графа 8 табл.3), а затем находим сумму потерь воды (графа 9 табл.3).

С учетом этих потерь избытки уменьшатся, а недостатки увеличатся (графы 11 и 12 табл.3), поэтому полезный объем брутто составит

Wбр = 9.578 млн. м3.

Сброс соответственно уменьшится: 16.348 млн. м3

Тогда полный объем водохранилища составит

Wполн = Wмо + Wфр + Wфр = 0.7484 + 9.578 + 0 = 10.326 млн. м3.

Характерные уровни и емкости водохранилища

Основными характеристиками водохранилищ являются:

нормальный подпорный уровень НПУ, м;

уровень мёртвого объема УМО, м;

катастрофический подпорный уровень КПУ, м;

полный объем водохранилища W, млн. м3 или км3;

полезный объем водохранилища Wплз, млн. м3 или км3;

мертвый объем водохранилища Wмо, млн. м3 или км3;

объем форсировки водохранилища Wфс, млн. м3 или км3;

коэффициент емкости водохранилища в= Wплз/Wо,

где Wо - средний многолетний сток.

НПУ - уровень воды, до которого водохранилище заполняется в нормальных условиях.

Полный объем водохранилища W - объм, заключенный между дном чаши водохранилища и зеркалом воды на отметке НПУ. Полный объем W не целиком используется для регулирования стока. Нижняя часть водохранилища, предназначенная для поддержания минимальных уровней воды и осаждения в ней наносов, называется мертвым объемом Wмо и сработке не подлежит.

Объем водохранилища, заключенный между поверхностями воды на отметках НПУ и УМО, называется полезным объемом -- Wплз. В периоды многоводья он заполняется, а в периоды маловодья опорожняется. Объем, заключенный между поверхностями воды на отметках НПУ и КПУ, называется объемом форсировки. КПУ -- катастрофически подпертый уровень в период пропуска через гидроузел исключительно многоводных половодий или паводков. Объем, форсировки Wфс служит для уменьшения величины сбросных расходов через гидроузел.

Рисунок 2. Основные элементы водохранилища

Образование водохранилища вызывает изменения в режиме водотока. В верхнем бьефе эти изменения в основном сводятся к следующему:

повышаются уровни воды и увеличиваются глубины, чтосвязано с затоплением территории в пределах чаши водохранилища;

уменьшаются скорости течения, в результате чего происходит выпадение значительной части осадков;

увеличивается водное зеркало, в связи с чем происходит увеличение испарения, что ведет к повышению солености воды в водохранилище.

В нижнем бьефе происходят такие изменения: уменьшаются половодные и паводковые расходы и увеличиваются меженние; и происходит размыв русла ниже гидроузла. Кроме указанных изменений в водотоке в верхнем бьефе происходят следующие: затопление территории в пределах чаши водохранилища; подтопление прилегающих к водохранилищу земель и обрушение берегов водохранилища под воздействием волн.

Кроме постоянного затопления земель, занятых водохранилищем в пределах НПУ, хозяйственное использование которых невозможно, наблюдаются временные затопления территории выше НПУ во время катастрофических половодий и паводков, от нагона воды ветром на берега и от подъема уровней воды при заторах и зажорах. Хозяйственное использование временно затопляемых земель возможно. При подтоплении происходит подъем грунтовых вод, что резко ухудшает условия хозяйственного использования земель и требует осушительных мероприятий.

Характерные уровни воды и их отметки находим, используя топографические характеристики водохранилища:

НПУ, соответствующий наполнению Wполн = 10.326 млн. м3, на отметке НПУ = 131.8 м плотины равен

НПУ = НПУ - ПП = 131.8 - 120.0 = 11.8 м;

Уровень мертвого объема на отметке УМО = 121.2 м равен

УМО = УМО - ПП = 121.2 - 120.0 = 1.2 м;

Форсированный подпорный уровень ФПУ равен

ФПУ = НПУ + 2.0 = 13.8 м,

где ПП - отметка подошвы плотины.

Сооружение водохранилищ – это, по сути, важнейший способ человечества выжить на нашей планете. Роль водохранилищ во все времена была грандиозной: от накопления воды для бытовых нужд, орошения сельхозугодий, борьбы с наводнениями в древности до получения электроэнергии в наши дни. Первые водохранилища человек построил более 3 тысяч лет назад в Древнем Египте , Месопотамии и Китае. Позже такие сооружения стали возводить в Индии, Иране, и Сирии.

Представляем подборку пяти самых крупных мировых водохранилищ при гидроэлектростанциях. Наслаждайтесь видами!

  1. Виктория, р. Нил (Уганда, ГЭС «Оуэн-Фолс»)
    Полный объем: 205 км 3
    Площадь: 76 000 км 2 (сопоставима с площадью такой страны, как Республика Панама)
    Длина: 320 км
    Ширина: 275 км
    Максимальная глубина: 83 м
    Высота плотины: 31 м
    Год начала строительства: 1947
    Год завершения заполнения: 1954
  2. Братское, р. Ангара (Россия, ГЭС «Братская»)
    Полный объем: 169 км 3
    Площадь: 5470 км 2
    Длина: 570 км (равно расстоянию между двумя Европейскими столицами Прагой и Будапештом)
    Ширина: 25 км
    Максимальная глубина: 150 м
    Высота плотины: 124,5
    Год начала строительства: 1955

  3. Кариба, р. Замбези (Замбия, Зимбабвэ, ГЭС «Кариба»)
    Полный объем: 160 км 3
    Площадь: 4450 км 2
    Длина: 220 км
    Ширина: 40 км
    Максимальная глубина: 78 м
    Высота плотины: 126 (это высота четырех девятиэтажных домов)
    Год начала строительства: 1957
    Год завершения заполнения: 1963

  4. Насер, р. Нил (Египет, Судан, Асуанский гидроузел)
    Полный объем: 157 км 3
    Площадь: 5120 км 2
    Длина: 550 км
    Ширина: 35 км
    Максимальная глубина: 130 м (это в десять раз превышает глубину Азовского моря в его самой низкой точке)
    Высота плотины: 111 м
    Год начала строительства: 1960
    Год завершения заполнения: 1970

  5. Вольта, р. Вольта (Гана, ГЭС «Акосомбо»)
    Полный объем: 147 км 3
    Площадь: 8500 км 2 (занимает почти 4% площади Ганы)
    Длина: 400 км
    Максимальная глубина: 80 м
    Высота плотины: 111 м
    Год начала строительства: 1961
    Год завершения заполнения: 1967

Интересно, что следующие по величине пять водохранилищ находятся именно в России: Красноярское, Зейское, Усть-Илимское, Куйбышевское, Байкальское (Иркутское).

просмотров
просмотров